projector augmented wave
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 39)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Katsunori Tagami ◽  
Jun NARA ◽  
Takahisa Ohno ◽  
Mamoru Usami

Abstract We propose an efficient theoretical method to take into account the core-hole spin density in the projector augmented wave (PAW) method, combined with spin un-polarized pseudopotentials and the planewave basis set. We apply this method to the calculation of absolute core level X-ray photoelectron spectroscopy (XPS) binding energies of WS2 and its related materials, and find the following points. First, inclusion of core-hole spin in the core-exited state is essential for accurate description of the binding energies, especially for light elements. Second, the calculated absolute binding energies show excellent agreement with experimental results. Finally, when oxygen atoms are incorporated in the basal plane of WS2 in the metallic phase, the O 1s binding energy is expected to appear at lower energy than the corresponding value in the semiconducting phase.


Author(s):  
Wei Li ◽  
Xianghe Peng ◽  
Alfonso H W Ngan ◽  
Jaafar El-Awady

Abstract First principles calculations of the energies and relaxation of unreconstructed low-index surfaces, i.e. (001), (011) and (111) surfaces, in NiCoCr and NiFeX (X=Cu, Co or Cr) equiatomic multi-principal element alloys are presented. The calculations were conducted for twelve-layer slabs represented by special quasi-random supercells using the projector augmented wave method within the generalized gradient approximation. While experimental predictions are unavailable for comparison, the calculated surface energies agree fairly well with those from thermodynamic modeling and a bond-cutting model. In addition, the calculations unveil an important surface structure, namely, that the topmost surface layer is in contraction except for the (001) surface of NiFeCr alloy, the next layer below is in extension, and the bulk spacing is gradually recovered from the subsequent layers down. Additionally, the surface contraction is the most pronounced on the (011) plane, being about 4-10% relative to the bulk spacings. The results presented here can provide an understanding of surface-controlled phenomena such as corrosion, catalytic activities and fracture properties in these equiatomic multi-principal element alloys.


2021 ◽  
Vol 6 (6) ◽  
pp. 068401
Author(s):  
Tingting Zhang ◽  
Yuechao Wang ◽  
Jiawei Xian ◽  
Shuaichuang Wang ◽  
Jun Fang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 769
Author(s):  
Jolanta Jaśkowska ◽  
Przemysław Zaręba ◽  
Anna Drabczyk ◽  
Agnieszka Kozak ◽  
Izabela D. Madura ◽  
...  

New pharmaceutically acceptable salts of trazodone (trazodone hydrogen bromide and trazodone 1-hydroxy-2-naphthonic acid) for the treatment of central nervous system disorders are synthesized and described. Although trazodone salts are poorly crystalline, single-crystal X-ray diffraction data for trazodone 1-hydroxy-2-naphthonic acid were collected and analyzed as well as compared to the previously described crystal structure of commercially available trazodone hydrochloride. The powder samples of all new salts were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and 13C solid-state nuclear magnetic resonance spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of carbon chemical shielding constants. The main goal of our research was to find salts with better physicochemical properties and to make an attempt to associate them with both the anion structure and the most prominent interactions exhibited by the protonated trazodone cation. The dissolution profiles of trazodone from tablets prepared from various salts with lactose monohydrate were investigated. The studies revealed that salts with simple anions show a fast release of the drug while the presence of more complex anion, more strongly interacting with the cation, effects a slow-release profile of the active substance and can be used for the preparation of the tables with a delay or prolonged mode of action.


Author(s):  
Jolanta Jaśkowska ◽  
Przemysław Zaręba ◽  
Anna Drabczyk ◽  
Agnieszka Kozak ◽  
Izabela Madura ◽  
...  

New pharmaceutically acceptable salts of trazodone for the treatment of central nervous system disorders are synthesized and described. Each salt (trazodone hydrogen bromide and trazodone 1-hydroxy-2-naphthoate) was obtained by two or three different methods leading to the same crystalline form. Although trazodone salts are poorly crystalline, single-crystal X-ray diffraction data for trazodone 1-hydroxy-2-naphthoate were collected and analyzed as well as compared to the previously described crystal structure of commercially available trazodone hydrochloride. The powder samples of all new salts were characterized by Fourier transform infrared spectroscopy and 13C solid-state nuclear magnetic resonance spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of carbon chemical shielding constants. The main goal of our research was to find salts with better physicochemical properties and to make an attempt to associate them with both the anion structure and the most prominent interactions exhibited by the protonated trazodone cation. The dissolution profiles of trazodone from tablets prepared from various salts with lactose monohydrate were investigated. The studies revealed that salts with simple anions show a fast release of the drug while the presence of more complex anion, more strongly interacting with the cation, effects a slow-release profile of the active substance and can be used for the preparation of the tables with a delay or prolonged mode of action.


2020 ◽  
Vol 11 (23) ◽  
pp. 10073-10080
Author(s):  
Weibin Chu ◽  
Qijing Zheng ◽  
Alexey V. Akimov ◽  
Jin Zhao ◽  
Wissam A. Saidi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document