Kopplung eines featurebasierten CAD-Systems mit einem wissensbasierten System / Linking a feature-based CAD system with a knowledge-based system

1994 ◽  
Vol 89 (11) ◽  
pp. 563-565
Author(s):  
S. Haasis ◽  
F. Mischkolin ◽  
J. Züfle
Author(s):  
J. K. Lee ◽  
K. H. Lee ◽  
N. S. Park ◽  
Y. U. Jang ◽  
J. Y. Bae ◽  
...  

Abstract The current trend of CAD system is to make the system intelligent. CAD systems need to be intelligent in the sense that they must be able to use knowledge to achieve the designer’s goal. In the early stages of ship design, more experienced and higher level knowledge is required rather than that of detail design. The existing CAD systems have several limitations in terms of satisfying the requirements of real design. Accordingly, a more powerful and capable CAD system is required to support the activities in the early stage of design. Recently the application of expert systems has been considered as a tool for extending the capability of existing CAD systems. In this paper, we present an approach to implement a practical knowledge-based system for the machinery layout design of a ship engine room. The knowledge-base is implemented and verified in the actual CAD environment of a ship engine room, named MADES, which we develop in this study. The approaches presented in this paper provide a practical example of a knowledge-based system for complex design problems, and can also provide guidance on implementing an integrated design expert system that extends the capability of existing CAD systems.


Author(s):  
David Potočnik ◽  
Miran Ulbin ◽  
Bojan Dolšak

This paper presents a knowledge-based system capable of giving the designer quality support when making decisions from the aspect of modeling the reinforcement of a plate-press within a position of maximum compressive load, and by choosing suitable material for the plate. Based on the selected combination of reinforcement and material, this system acquaints the user with the size and position of the largest comparative stress, and the greatest nodal displacement in the load-direction. This system operates based on the implemented knowledge of experts in the execution of design, material selection, and numerical analysis based on the finite-element method (FEM), which was written with the help of parameters within the knowledge-base of the CATIA V5 CAD-system. Using this system gives the user an opportunity to reach conclusions that are crucial for designing a plate-press or pressure-loaded die-elements, in general. The results reveal that the system can dramatically shorten design time and improve design quality in comparison to manual design process.


Author(s):  
David R. Nitschke ◽  
Yuh-Min Chen ◽  
R. Allen Miller

Abstract The concept of “Features” has been recognized as a neutral form of communication between design and manufacturing. Since virtually all CAD systems define part models using B-Rep or CSG formats, a facility is needed to convert geometry based part models to ones which are feature based. This paper outlines the framework of a facility which would enable part models from any type of CAD system to be converted to a format which could be analyzed using a knowledge based design system. This facility relies on the user to recognize and isolate the individual features of the model and then extracts the dimensions, locations and relative positioning of the features within the model. These features are then organized into a feature graph for the construction of a feature based part representation. The procedures for the construction of this part representation include feature instantiation, feature placement and functional specification.


Author(s):  
Padmanabh Dabke ◽  
Vallury Prabhakar ◽  
Sheri Sheppard

Abstract This paper describes how feature-based techniques can be used in a knowledge-based system to support finite element idealizations. Any system of this kind must have two important features. First, it must capture the experiential and heuristic knowledge used by expert analysts in making idealization decisions. Second, the system must be able to perform spatial reasoning about the finite element model being analyzed. The first requirement led us to incorporate knowledge-based reasoning in the idealization systems. We chose the formalism of “features” to capture the spatial reasoning because expert analysts often describe the idealization process in terms of removing / modifying features (such as holes, slots, notches, etc.) and their spatial properties.


2020 ◽  
Vol 7 (5) ◽  
pp. 603-614 ◽  
Author(s):  
Mutahar Safdar ◽  
Tahir Abbas Jauhar ◽  
Youngki Kim ◽  
Hanra Lee ◽  
Chiho Noh ◽  
...  

Abstract Feature-based translation of computer-aided design (CAD) models allows designers to preserve the modeling history as a series of modeling operations. Modeling operations or features contain information that is required to modify CAD models to create different variants. Conventional formats, including the standard for the exchange of product model data or the initial graphics exchange specification, cannot preserve design intent and only geometric models can be exchanged. As a result, it is not possible to modify these models after their exchange. Macro-parametric approach (MPA) is a method for exchanging feature-based CAD models among heterogeneous CAD systems. TransCAD, a CAD system for inter-CAD translation, is based on this approach. Translators based on MPA were implemented and tested for exchange between two commercial CAD systems. The issues found during the test rallies are reported and analyzed in this work. MPA can be further extended to remaining features and constraints for exchange between commercial CAD systems.


Author(s):  
Yuh-Min Chen ◽  
R. Allen Miller ◽  
K. Rao Vemuri

Abstract To increase the capabilities and intelligence of CAD/CAM systems, a feature based modeling environment, integrated with a knowledge based environment, is under development utilizing a commercial CAD system. This environment allows designers to model parts with features, and provides high-level part models to support geometric reasoning in manufacturing assessment and related functions. Two fundamental issues have been considered: (1) What kind of information is required to specify a part and to support reasoning about the part in a wide variety of applications?, and (2) How can the results serve the geometric reasoning needs of the various engineering applications which need geometric information about the part? This paper will discuss the information required for defining net shaped parts (parts to be manufactured by net shape processes), a framework for a feature based modeling environment, the procedures for feature based design, and the construction of high-level (semantic) pan models suitable for geometric reasoning in a knowledge based environment.


Author(s):  
Rajeev Talwar ◽  
Souran Manoochehri

Abstract This paper presents efficient and accurate algorithms for the analytical detection of geometric interactions between features in a CAD environment. The developed methodology is meant to be utilized in a knowledge-based design system using feature-based modeling. The algorithms take surface information from the CAD system and use geometric inferencing to evaluate these interactions. Features represented by both convex and concave polyhedra are considered. The methodology developed here is able to deal with concave features effectively and, therefore, eliminates the need for their decomposition into convex sub-features. Sets of conditional statements based on simple and elegant rules have been developed to distinguish different types of interactions. Feature interactions are classified as intersecting or non-intersecting. For the non-intersecting cases, the features can be contained or separate and, for both cases, they can touch each other through an edge, a vertex and/or a surface. For the intersecting cases, intersections through a surface, an edge, a common edge and a common surface are identified. For all the cases the vertices, edges and surfaces involved in the interactions are identified and the relevant distances are evaluated. A computer program has been successfully implemented for polyhedral features and examples have been given to demonstrate its effectiveness.


Author(s):  
V. A. Martynyuk ◽  
V. A. Trudonoshin ◽  
V. G. Fedoruk

The article considers applications of foreign CAD-systems in creating the challenging projects at domestic enterprises and design bureaus. As stated in the article "... presently, there is no domestic CAD-system that could completely replace such foreign products as NX, CATIA, Credo". Besides, due to international cooperation in creating the challenging projects (for example, the project to create a modern wide-body aircraft, proposed jointly with China), it makes sense to use the worldwide known and popular CAD systems (the aforementioned NX, CATIA, Credo). Therefore, in the foreseeable future, we will still have to use foreign software products. Of course, there always remains a question of the reliability of the results obtained. Actually, this question is always open regardless of what software product is used - domestic or foreign. This question has been haunting both developers and users of CAD systems for the last 30 to 40 years. But with using domestic systems, it is much easier to identify the cause of inaccurate results and correct the mathematical models used, the methods of numerical integration applied, and the solution of systems of nonlinear algebraic systems. Everything is much more complicated if we use a foreign software product. All advertising conversations that there is a tool to make the detected errors available to the developers, remain only conversations in the real world. It is easily understandable to domestic users, and, especially, to domestic developers of similar software products. The existing development rates and competition for potential buyers dictate a rigid framework of deadlines for releasing all new versions of the product and introducing the latest developments into commercial product, etc. As a result, the known errors migrate from version to version, and many users have accepted it long ago. Especially, this concerns the less popular tools rather than the most popular applications (modules) of a CAD system. For example, in CAD systems, the "Modeling" module where geometric models of designed parts and assembly units are created has been repeatedly crosschecked. But most of the errors are hidden in applications related to the design of parts from sheet material and to the pipeline design, as well as in applications related to the analysis of moving mechanisms and to the strength or gas dynamic analysis by the finite element method.The article gives a concrete example of a moving mechanism in the analysis of which an error was detected using the mathematical model of external influence (a source of speed) in the NX 10.0 system of Siemens.


Sign in / Sign up

Export Citation Format

Share Document