Test Method for Determining Unsaturated and Saturated Hydraulic Conductivity in Porous Media by Steady-State Centrifugation

2000 ◽  
Author(s):  
Soil Research ◽  
1982 ◽  
Vol 20 (4) ◽  
pp. 295 ◽  
Author(s):  
DR Scotter ◽  
BE Clothier ◽  
ER Harper

A method of measuring, with minimal soil disturbance, the saturated hydraulic conductivity and sorptivity of field soil is presented and discussed. It involves measuring the steady-state infiltration of ponded water from two rings, of different radii, that have been lightly pressed into the soil surface. The method is based on Wooding's solution for steady infiltration from a shallow, circular pond. Criteria for selecting ring radii are discussed. Results for three field soils are found to give consistent values for the conductivity and sorptivity.


2009 ◽  
Vol 89 (5) ◽  
pp. 671-676 ◽  
Author(s):  
Z Weixia ◽  
C Huanjie ◽  
Z Zhenhua ◽  
S Zhijie

Indirect subsurface drip irrigation (ISDI) is a method of increasing the irrigation water use efficiency of drip irrigation without the need to bury irrigation tubes and wet the soil surface. A major problem of ISDI is the mismatch between emitter discharge rate and water-conducting device dimension, which will result in over-filling of application water. In this paper, we propose to use the steady-state principle of constant-head well permeameter (CHWP) to quantify the relationship between emitter discharge rate and water-conducting device dimension for ISDI. CHWP tests and ISDI tests were carried out in a 300 m2 winter wheat fallow to verify its feasibility. The steady-state characteristic of these two methods was also studied using long-term infiltration. Results indicate that the equilibration time (110 min) in the ISDI tests was greater than that in the CHWP tests (30 min). The steady ponded depth in ISDI had a smaller variation than the steady water discharge rate in the CHWP. When using the steady-state principle of CHWP to design ISDI systems, there was significant linear correlation between predicted and measured ponded depth values (R2 = 0.8379). The soil field-saturated hydraulic conductivity calculated by these two tests was approximately equal. These results demonstrate that the steady-state principle of CHWP could be used to select appropriate irrigation systems for ISDI, and ISDI provides another technique to obtain the field-saturated hydraulic conductivity. Key words: Constant-head well permeameter, field-saturated hydraulic conductivity, indirect subsurface drip irrigation, steady-state


1990 ◽  
Vol 21 (2) ◽  
pp. 119-132 ◽  
Author(s):  
Johnny Fredericia

The background for the present knowledge about hydraulic conductivity of clayey till in Denmark is summarized. The data show a difference of 1-2 orders of magnitude in the vertical hydraulic conductivity between values from laboratory measurements and field measurements. This difference is discussed and based on new data, field observations and comparison with North American studies, it is concluded to be primarily due to fractures in the till.


2019 ◽  
Vol 34 (2) ◽  
pp. 237-243
Author(s):  
Jari Hyväluoma ◽  
Mari Räty ◽  
Janne Kaseva ◽  
Riikka Keskinen

2021 ◽  
Vol 13 (13) ◽  
pp. 7301
Author(s):  
Marcin K. Widomski ◽  
Anna Musz-Pomorska ◽  
Wojciech Franus

This paper presents research considering hydraulic as well as swelling and shrinkage characteristics of potential recycled fine particle materials for compacted clay liner for sustainable landfills. Five locally available clay soils mixed with 10% (by mass) of NaP1 recycled zeolite were tested. The performed analysis was based on determined plasticity, cation exchange capacity, coefficient of saturated hydraulic conductivity after compaction, several shrinkage and swelling characteristics as well as, finally, saturated hydraulic conductivity after three cycles of drying and rewetting of tested specimens and the reference samples. The obtained results showed that addition of zeolite to clay soils allowed reduction in their saturated hydraulic conductivity to meet the required threshold (≤1 × 10−9 m/s) of sealing capabilities for compacted clay liner. On the other hand, an increase in plasticity, swelling, and in several cases in shrinkage, of the clay–zeolite mixture was observed. Finally, none of the tested mixtures was able to sustain its sealing capabilities after three cycles of drying and rewetting. Thus, the studied clayey soils mixed with sustainable recycled zeolite were assessed as promising materials for compacted liner construction. However, the liner should be operated carefully to avoid extensive dissication and cracking.


Sign in / Sign up

Export Citation Format

Share Document