scholarly journals Investigation of the Effect of Heat on Specially Formulated Thermoplastic Polyolefin (TPO) Films by Thermogravimetry, Dynamic Mechanical Analysis, and Fourier Transform Infrared Spectroscopy

2007 ◽  
Vol 4 (8) ◽  
pp. 101031 ◽  
Author(s):  
Ana H. Delgado ◽  
George Howell ◽  
Randy Ober ◽  
Paul E. Oliveira ◽  
Arnold Peterson ◽  
...  
Author(s):  
A Arul Jeya Kumar ◽  
M Prakash

In today's scenario, most of the research works are carried out on the replacement of synthetic fibers using eco-friendly materials called natural fibers. Although there are many research findings in connection with natural fibers, in this work, a new combination of natural fiber having high biomedical potential is reinforced in the polymer composite. Three different weight fractions of polylactic acid, basalt, and Cissus quadrangularis fibers were melt mixed using twin-screw extruder named as PBCQ 1, PBCQ 2, and PBCQ 3. The mechanical, physical, and thermomechanical properties were studied by testing tensile, flexural, impact, hardness, water absorption, Fourier-transform infrared spectroscopy, and dynamic mechanical analysis of the injection-molded biomedical composite specimens prepared as per ASTM standards. It was noticed that the PBCQ 2 composite has the maximum elongation strength, bending strength, shear strength, and shore D hardness compared to other composites taken in this study. Water absorption of PBCQ 1 and PBCQ 2 composites are relatively less than PBCQ 3. The scanning electron microscopy micrograph of PBCQ composites shows tight bonding between the matrix and fibers. The adhesion of matrix and fibers was confirmed by Fourier-transform infrared spectroscopy graph, which indicates the stretching of molecular structure for the occurrence of O–H, C=O, and C–H links. The dynamic mechanical analysis curve of the PBCQ 2 composite indicates high storage modulus and less loss modulus compared to PBCQ 1 and PBCQ 3 due to the low weight percentage of basalt fiber in these composites.


2002 ◽  
Vol 35 (23) ◽  
pp. 8794-8801 ◽  
Author(s):  
Haochuan Wang ◽  
Steven R. Aubuchon ◽  
Darla Graff Thompson ◽  
Jill C. Osborn ◽  
Anderson L. Marsh ◽  
...  

2018 ◽  
Vol 37 (23) ◽  
pp. 1402-1417 ◽  
Author(s):  
M Bassyouni

The incorporation of sisal fiber as reinforcement materials for polymers will be advantageous if it is synthesized and manufactured perfectly. In this study, surface modification using polymeric diphenylmethane di-isocyanate and gamma-aminopropyltriethoxysilane was applied for further amelioration of polypropylene–sisal bonding. Surface morphology, thermomechanical properties, thermal stability, and chemical bonding were investigated using scanning electron microscopy, dynamic mechanical analysis, thermogravimetric analysis, and Fourier transform infrared spectroscopy, respectively. A number of mathematical models were studied for predicting the effect of untreated and modified sisal fiber loadings on the mechanical properties of biocomposites. Polymeric diphenylmethane di-isocyanate showed a significant improvement on the thermal and mechanical properties of polypropylene biocomposites. Fourier transform infrared spectroscopy analysis of polypropylene–sisal biocomposite showed the formation of urethane group at 3333 cm−1 in the presence of polymeric diphenylmethane di-isocyanate. Glass transition temperature of polypropylene–sisal was slightly increased to 6.8°C by chemical modification with polymeric diphenylmethane di-isocyanate. Yield strength of polypropylene–sisal (30 wt%) was enhanced by more than 50% with polymeric diphenylmethane di-isocyanate chemical treatment. Halpin–Tsai and Nielsen theoretical mathematical models showed a good agreement with experimental results of polypropylene–untreated sisal and polypropylene–treated sisal, respectively.


Sign in / Sign up

Export Citation Format

Share Document