scholarly journals J and CTOD Estimation Equations for Shallow Cracks in Single Edge Notch Bend Specimens

1993 ◽  
Vol 21 (4) ◽  
pp. 228 ◽  
Author(s):  
DR Petersen ◽  
MT Kirk ◽  
RH Dodds
Author(s):  
Andrew Cosham ◽  
Phil Hopkins ◽  
David G. Jones ◽  
Julian Barnett

Line pipe steel is a carbon manganese steel. The toughness of line pipe steel undergoes a transition from high toughness (on the upper shelf) to low toughness (on the lower shelf) as the temperature decreases. A fluid will cool significantly as it expands through a leak in a pipeline. This has led to the suggestion that localised cooling of the material surrounding the leak might be sufficient to cool the material down to below the ductile to brittle transition temperature and cause a brittle fracture. Warm pre-stressing occurs when a load is applied to a structure containing a defect and then the temperature of the structure is reduced. Warm pre-stressing causes the defect in the structure to fail at a higher load at the lower temperature than if it had not experienced this prior loading at the previously higher temperature. A programme of single edge notch bend tests has been conducted on behalf of National Grid Carbon to demonstrate the beneficial effect of warm pre-stressing in a line pipe steel. The material tested was a sample of 914.4 mm outside diameter, 19.1 mm wall thickness, Grade API 5L X60 line pipe. Single edge notch bend specimens were subject to the ‘load-cool-fail’ cycle and the ‘load-unload-cool-fail’ cycle. The effect of different levels of stable ductile crack growth during the pre-load was also investigated. Warm pre-stressing is shown to have a beneficial effect. The load at failure in the specimens that had been subject to warm pre-stressing was higher than those that had not been subject to warm pre-stressing, and, in most cases, it was higher than the pre-load. The fracture toughness (in terms of the stress intensity factor) of the specimens that had been subject to warm pre-stressing was 1.4 to 1.7 times higher than that of those that had not been subject to warm pre-stressing. The results of the tests were conservatively predicted using the theoretical models. Also, the results are consistent with previous tests on structural steels. Therefore, localised cooling of the material around a leak in a pipeline is not predicted to result in a failure.


Author(s):  
Henryk G. Pisarski ◽  
Colin M. Wignall

The relationship between fracture toughness estimated using standard single edge notch bend (SENB), single edge notch tension (SENT) test specimens and fracture toughness associated with a circumferential flaw in a pipe girth weld is explored in terms of constraint using the Q parameter. It is shown that in the elastic-plastic regime, use of standard deeply notched SENB specimens provides a conservative assessment of fracture toughness, for both weld metal and HAZ, because of the high constraint associated with this specimen geometry. Use of specimen geometries and loading modes associated with lower constraint (e.g. SENT and shallowed notched SENB specimens), allow for improved estimates of fracture toughness to be made that are appropriate for the assessment of circumferential flaws in pipe girth welds. Recommendations are given on the specimen designs and notch orientations to be employed when evaluating weld metal and HAZ fracture toughness.


1989 ◽  
Vol 17 (6) ◽  
pp. 381 ◽  
Author(s):  
A Wolfenden ◽  
JE Perez Ipiña ◽  
EL Santarelli

1993 ◽  
Vol 12 (16) ◽  
pp. 1258-1260 ◽  
Author(s):  
D. A. Dillard ◽  
P. R. McDaniels ◽  
J. A. Hinkley

1977 ◽  
Vol 12 (3) ◽  
pp. 167-179 ◽  
Author(s):  
M P Harper ◽  
E G Ellison

The applicability of the C∗ parameter for the prediction of creep crack propagation rates is considered. A new method for estimating C∗ is presented, the results from which show good agreement with those from an existing technique. Experimental results from creep crack growth tests, conducted on a 1 Cr Mo V steel using both compact tension and single edge notch bend specimens, indicate that good correlation with C∗ is obtained once the effects of stress redistribution become negligible. Finally, comparisons are drawn between C∗ and other possible correlating parameters, and the limitations of each approach are discussed.


Sign in / Sign up

Export Citation Format

Share Document