Rotation Corrections in Three-Point Single Edge Notch Bend Specimens

1989 ◽  
Vol 17 (6) ◽  
pp. 381 ◽  
Author(s):  
A Wolfenden ◽  
JE Perez Ipiña ◽  
EL Santarelli
Author(s):  
Andrew Cosham ◽  
Phil Hopkins ◽  
David G. Jones ◽  
Julian Barnett

Line pipe steel is a carbon manganese steel. The toughness of line pipe steel undergoes a transition from high toughness (on the upper shelf) to low toughness (on the lower shelf) as the temperature decreases. A fluid will cool significantly as it expands through a leak in a pipeline. This has led to the suggestion that localised cooling of the material surrounding the leak might be sufficient to cool the material down to below the ductile to brittle transition temperature and cause a brittle fracture. Warm pre-stressing occurs when a load is applied to a structure containing a defect and then the temperature of the structure is reduced. Warm pre-stressing causes the defect in the structure to fail at a higher load at the lower temperature than if it had not experienced this prior loading at the previously higher temperature. A programme of single edge notch bend tests has been conducted on behalf of National Grid Carbon to demonstrate the beneficial effect of warm pre-stressing in a line pipe steel. The material tested was a sample of 914.4 mm outside diameter, 19.1 mm wall thickness, Grade API 5L X60 line pipe. Single edge notch bend specimens were subject to the ‘load-cool-fail’ cycle and the ‘load-unload-cool-fail’ cycle. The effect of different levels of stable ductile crack growth during the pre-load was also investigated. Warm pre-stressing is shown to have a beneficial effect. The load at failure in the specimens that had been subject to warm pre-stressing was higher than those that had not been subject to warm pre-stressing, and, in most cases, it was higher than the pre-load. The fracture toughness (in terms of the stress intensity factor) of the specimens that had been subject to warm pre-stressing was 1.4 to 1.7 times higher than that of those that had not been subject to warm pre-stressing. The results of the tests were conservatively predicted using the theoretical models. Also, the results are consistent with previous tests on structural steels. Therefore, localised cooling of the material around a leak in a pipeline is not predicted to result in a failure.


Author(s):  
Henryk G. Pisarski ◽  
Colin M. Wignall

The relationship between fracture toughness estimated using standard single edge notch bend (SENB), single edge notch tension (SENT) test specimens and fracture toughness associated with a circumferential flaw in a pipe girth weld is explored in terms of constraint using the Q parameter. It is shown that in the elastic-plastic regime, use of standard deeply notched SENB specimens provides a conservative assessment of fracture toughness, for both weld metal and HAZ, because of the high constraint associated with this specimen geometry. Use of specimen geometries and loading modes associated with lower constraint (e.g. SENT and shallowed notched SENB specimens), allow for improved estimates of fracture toughness to be made that are appropriate for the assessment of circumferential flaws in pipe girth welds. Recommendations are given on the specimen designs and notch orientations to be employed when evaluating weld metal and HAZ fracture toughness.


1977 ◽  
Vol 12 (3) ◽  
pp. 167-179 ◽  
Author(s):  
M P Harper ◽  
E G Ellison

The applicability of the C∗ parameter for the prediction of creep crack propagation rates is considered. A new method for estimating C∗ is presented, the results from which show good agreement with those from an existing technique. Experimental results from creep crack growth tests, conducted on a 1 Cr Mo V steel using both compact tension and single edge notch bend specimens, indicate that good correlation with C∗ is obtained once the effects of stress redistribution become negligible. Finally, comparisons are drawn between C∗ and other possible correlating parameters, and the limitations of each approach are discussed.


Author(s):  
Anthony J. Horn ◽  
Peter J. Budden

Structural integrity assessment codes such as R6 and BS7910 provide guidance on the assessment of flaws that are assumed to be infinitely sharp. In many cases, such as fatigue cracks, this assumption is appropriate, however it can be pessimistic for flaws that do not have sharp tips such as lack of fusion, porosity or mechanical damage. Several methods have been proposed in the literature to quantify the additional margins that may be present for non-sharp defects compared to the margins that would be calculated if the defect were assumed to be a sharp crack. A common feature of these methods is the need to understand how the effective toughness, characterised using the J-integral for a notch, varies with notch acuity. No comprehensive guidance currently exists for obtaining J experimentally from specimens containing notches, hence the typical approach is to use equations intended for pre-cracked specimens to calculate J for notched specimens. This paper presents a comprehensive set of test guidance for calculating J from Single Edge Notch Bend (SENB) fracture toughness specimens containing notches instead of fatigue pre-cracks. This has been achieved using 3D Finite Element Analyses to quantify the accuracy of formulae intended for pre-cracked specimens in fracture toughness testing standards ASTM E1820, BS7448-1 and ESIS P2-92 when applied to specimens containing notches. The paper quantifies the accuracy of these equations for notched SENB specimens and identifies the conditions under which the equations can lead to inaccurate measurement of J for notched specimens.


Sign in / Sign up

Export Citation Format

Share Document