Volume 6B: Pipeline and Riser Technology
Latest Publications


TOTAL DOCUMENTS

63
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791845479

Author(s):  
Marco A. P. Rosas ◽  
Ana Paula F. Souza ◽  
Marcos V. Rodrigues ◽  
Danilo Machado L. da Silva

In this paper the behavior and the relationship between hydrostatic collapse pressure and diametrically opposed radial compressive force for pipelines were analyzed. This study presents an introduction of a research work aimed to assess the pipeline collapse pressure based on the radial collapse force. Initially the hydrostatic collapse pressure is analyzed, for pipes with different diameter to wall thickness ratio (D/t) and ovalities, using classical assessment (DNV method) and numerical models (FE). Then, the compressive radial force is also analyzed using numerical models validated by a small-scale ring specimen test. After that, the relationship between hydrostatic collapse pressure and compressive radial force is discussed. These first results show that the radial force is a quadratic function of the collapse pressure.


Author(s):  
Tatiana Vargas-Londoño ◽  
José Renato M. de Sousa ◽  
Carlos Magluta ◽  
Ney Roitman

Due to its compound cross-section, the prediction of the structural response of flexible pipes to loads such as their self-weight, internal and external pressure, movements imposed by the floating system and environmental loads such as currents, waves and wind is quite complex. All these loads generate stresses and strains in the cross section of the pipe that have to be properly evaluated in order to ensure integrity of the line. Research has been done on the local behavior of flexible pipes under combined axisymmetric loads as well as under bending loads. However, there is a lack of research combining both axisymmetric and bending loads, as also in the study of the strains in the tensile amour layers of the pipes, aspects which are important for the calibration of theoretical models to predict such behavior. Based on that, this study aims to evaluate the local behavior of flexible pipes under combinations of axisymmetric (tension, and internal pressure) and bending loads via a series of experimental tests in a 9.13″ I.D pipe. In the experimental tests, the behavior of the pipe was studied for three load combinations: i) bending combined with tension; ii) bending combined with internal pressure; and iii) bending combined with tension and internal pressure. Based on these tests, the authors obtained the strains in the tensile armor layer, axial elongation due to tension, axial reaction forces due to internal pressure, and deflection due to bending. These measurements were used to calibrate a theoretical model devoted to simulate the pipe’s response, getting accurate results for stiffness and stresses of the pipe in each scenario.


Author(s):  
Stig Berge ◽  
Ting Wang ◽  
Nina Langhelle

Tensile armour wire from two flexible risers was fatigue tested for assessment of SN-curves. Both risers had been subjected to sea water flooding of the annulus for several years. The wire was corroded in the form of pits, however, the cross section was not significantly reduced. Reference wire from the same batches of material that had not been subjected to corrosion was also tested. Testing was carried out in air, to investigate the effect of accumulated corrosion damage in terms of a fatigue notch factor. The fatigue strength of the corroded wire was significantly reduced, corresponding to a fatigue notch factor in the range 1.5–1.7. The wire was examined by optical and by electron scanning microscopy and the surface defects were characterised.


Author(s):  
Guomin Ji ◽  
Bernt J. Leira ◽  
Svein Sævik ◽  
Frank Klæbo ◽  
Gunnar Axelsson ◽  
...  

This paper presents results from a case study performed to evaluate the residual capacity of a 6″ flexible pipe when exposed to corrosion damages in the tensile armour. A three-dimensional nonlinear finite element model was developed using the computer code MARC to evaluate the increase in mean and dynamic stresses for a given number of damaged inner tensile armor wires. The study also includes the effect of these damages with respect to the associated stresses in the pressure spiral. Furthermore, the implications of a sequence of wire failures with respect to the accumulated time until cross-section failure in a probabilistic sense are addressed.


Author(s):  
Venkat R. Krishnan ◽  
Stefanie Asher ◽  
Krassimir Doynov ◽  
Yan-Hui Zhang

Corrosion fatigue in the tensile armor layer is a design consideration for both flexible risers and flowlines offshore. Recently, the industry has experienced a handful of in-service flexible pipe replacements due to corrosion fatigue of armor wires. That experience motivated the work effort summarized herein. This paper presents the preliminary results from an experimental program undertaken by ExxonMobil to evaluate and suggest improvements to the currently established fatigue testing methodology for armor wires in corrosive environments. In particular, the results from a frequency scanning test program for armor wires and a methodology for artificially generating pitted armor wire specimens for fatigue endurance tests are presented.


Author(s):  
Mir Emad Mousavi ◽  
Sanjeev Upadhye ◽  
Kevin Haverty

The design of riser systems can be improved if structural reliability methods are used to assess their safety and integrity and confirm that such design meets a target annual probability of failure. TTRs are typically multi–bore assemblies involving several sub-assemblies. The failure of any of the components of a TTR under extreme or service environmental conditions can lead to an immediate failure of the entire assembly and impose a direct risk of damaging the wellheads, conductors, casing and tubing hangers, or other subsea equipment, because they are installed directly on top of the wellhead. However, the actual strength safety of the TTR cannot be examined unless after it is installed and examined under extreme events. Because of the numerous uncertainties associated with the design of TTRs, a probabilistic approach based on structural reliability methods can account for many of those uncertainties and serve as a basis for their reliable and cost-effective design. In turn, a comprehensive reliability assessment of a TTR requires extensive analysis that is considerably more complex and time consuming compared to a conventional deterministic-based analysis. This paper presents a probabilistic-based simplified methodology for the strength reliability assessment of TTR systems. In this method, marginal values on some uncertain model inputs are considered similar to the conventional analysis methods but, some key random variables related to environmental demands and component capacities are considered with their associated probability distributions. As a result, this method can be used to estimate the minimum level of safety of the TTR under extreme events. Additionally, results of the proposed method are discussed for integrity analysis and integrity-based optimal design of the TTR system, which compare the safety of the TTR components and estimate the component Optimality Factors for improving the design integrity and meeting a target minimum annual probability of failure.


Author(s):  
Claus Egebjerg Kristensen ◽  
Jan Muren ◽  
Geir Skeie ◽  
Håvard Skjerve ◽  
Nils Sødahl

Recent failures of multi-layer pressure sheath risers have shown that the carcass may fail in the top termination due to excessive axial loads. This is a new failure mode for flexible risers, recently presented by the authors in more general terms. The present paper explains details of the established load model and the validation against mid-scale tests, risers failed during operation, and operating risers close to failure by this new mode. The key driver in the model is the temperature contraction of pressure sheath layers. Also influenced by changes in polymer properties over the operational history, temperature and time is explained. Other contributing factors in the load model are gravity-component and bore pressure. The prediction model for the carcass loads are developed during Statoils investigation in 2011–12. The model is regarded representative for 20% of the most exposed risers. Several of the input parameters are uncertain and a Monte Carlo simulation approach is selected to study the variability and predict the probability of failure, given that radial contact pressure is sufficiently low. The approach adopted in the model may be applicable to other risers where polymers and steel components act together, and in such circumstances act as a guide for alternative model developments.


Author(s):  
Andrew Cosham ◽  
Phil Hopkins ◽  
David G. Jones ◽  
Julian Barnett

Line pipe steel is a carbon manganese steel. The toughness of line pipe steel undergoes a transition from high toughness (on the upper shelf) to low toughness (on the lower shelf) as the temperature decreases. A fluid will cool significantly as it expands through a leak in a pipeline. This has led to the suggestion that localised cooling of the material surrounding the leak might be sufficient to cool the material down to below the ductile to brittle transition temperature and cause a brittle fracture. Warm pre-stressing occurs when a load is applied to a structure containing a defect and then the temperature of the structure is reduced. Warm pre-stressing causes the defect in the structure to fail at a higher load at the lower temperature than if it had not experienced this prior loading at the previously higher temperature. A programme of single edge notch bend tests has been conducted on behalf of National Grid Carbon to demonstrate the beneficial effect of warm pre-stressing in a line pipe steel. The material tested was a sample of 914.4 mm outside diameter, 19.1 mm wall thickness, Grade API 5L X60 line pipe. Single edge notch bend specimens were subject to the ‘load-cool-fail’ cycle and the ‘load-unload-cool-fail’ cycle. The effect of different levels of stable ductile crack growth during the pre-load was also investigated. Warm pre-stressing is shown to have a beneficial effect. The load at failure in the specimens that had been subject to warm pre-stressing was higher than those that had not been subject to warm pre-stressing, and, in most cases, it was higher than the pre-load. The fracture toughness (in terms of the stress intensity factor) of the specimens that had been subject to warm pre-stressing was 1.4 to 1.7 times higher than that of those that had not been subject to warm pre-stressing. The results of the tests were conservatively predicted using the theoretical models. Also, the results are consistent with previous tests on structural steels. Therefore, localised cooling of the material around a leak in a pipeline is not predicted to result in a failure.


Author(s):  
Scot McNeill ◽  
Paul Angehr ◽  
Dan Kluk ◽  
Tomokazu Saruhashi ◽  
Ikuo Sawada ◽  
...  

A method is described for determining quasi-static and dynamic riser angles using measured data typically found in a riser fatigue monitoring system, specifically acceleration and angular rate data. Quasi-static riser inclination and orientation of the inclination plane are determined from the low frequency triaxial accelerations, containing measurement of the gravitational body force. Components of the gravitational body force along the accelerometer axes vary slowly with the riser quasi-static response. The slowly varying Euler angles are determined from the components of gravity along the three axes. Dynamic riser inclination along and transverse to the quasi-static inclination plane are determined by integration of the angular rates, followed by transformation into a coordinate system aligned with the quasi-static inclination plane. The quasi-static and dynamic inclination angles are combined to arrive at the time trace of riser inclination angles. Following implementation of the method in Matlab®, the procedure was validated and the program verified using laboratory test data. A double-gimbaled platform was constructed, on which were mounted a triaxial accelerometer, biaxial angular rate and biaxial inclinometer (reference sensor). A battery of static and dynamic tests was carried out on the platform. Machinists’ levels and angle gauges were used to set the inclination in the various tests. The angles derived from the acceleration and angular rate data were compared to those of the reference inclinometer. Angle estimates were shown to match the reference angles with negligible error. The method was then implemented into the real-time Riser Fatigue Monitoring System (RFMS) aboard the Chikyu drillship. The algorithm was run using data from an emergency disconnect event that occurred in November, 2012. Quasi-static riser inclination angles were quite large due to high currents near the sea surface. Dynamic riser inclination angles proved to be significant due to Vortex Induced Vibration of the lower portion of the riser that immediately followed the disconnect event. It is important to note that the method uses data that is typically already included in real-time riser monitoring systems. Therefore only a software update is required to provide real-time riser angle information. If the method is built into data processing routines for real-time riser monitoring systems, the need for additional instrumentation, such as inclinometers near flex joints, may be circumvented. On the other hand, if inclinometers already exist, the method serves as an independent source of riser angle information at several locations on the riser. The method can also be used to calculate riser and Blow out Preventer (BOP) stack angles from data recorded using stand-alone, battery-powered loggers.


Author(s):  
Amirhossein Salimi ◽  
Mark Kalman ◽  
Liang Yu

Flexible pipe risers are often protected from over-bending with a bend stiffener at the lower end of an I-tube in FPSO installations. Due to the high thermal resistance of the polyurethane bend stiffener, there is a potential risk for both riser and bend stiffener to exceed their temperature limits. This paper presents classical and computational fluid dynamics thermal models and analyses to confirm that free convection heat transfer from the pipe wall to the water in the gap between the pipe and bend stiffener, and buoyancy driven flow along the gap is sufficient to maintain the temperature of the pipe layers and bend stiffener within allowable values. Details of the models and solutions for an example riser with 120 °C design temperature in a Gulf of Mexico installation is presented.


Sign in / Sign up

Export Citation Format

Share Document