Evaluation of Sharp Indentation Testing of Thin Films and Ribbons on Hard Substrates

2002 ◽  
Vol 30 (1) ◽  
pp. 64 ◽  
Author(s):  
DR Petersen ◽  
RE Link ◽  
PL Larsson ◽  
IRM Peterson
1991 ◽  
Vol 226 ◽  
Author(s):  
M.A. Korhonen ◽  
P. Bergesen ◽  
Che-Yu Li

AbstractThe yield strength of metallic thin films bonded to hard substrates can be significantly higher than is customary for bulk samples of the same metal. This is related to the constrained nature of the deformation. The constrained deformation, as well as the commonly observed crystallographic texture of thin films, places restrictive conditions on the mechanisms of deformation that produce stress relaxation. In narrow aluminum based metallizations used as interconnects in large scale integrated circuits thermal stress induced voiding provides an effective means for stress relaxation. For these interconnects, the stress state is tensile after excursions to higher temperatures; the stresses relax mainly by dislocation glide and grain boundary sliding during the cooldown, while the longer term relaxation is governed by stress-induced voiding and dislocation creep.


1991 ◽  
Vol 225 ◽  
Author(s):  
M. A. Korhonen ◽  
P. Brørgesen ◽  
Che-Yu Li

ABSTRACTThe yield strength of metallic thin films bonded to hard substrates can be significantly higher than is customary for bulk samples of the same metal. This is related to the constrained nature of the deformation. The constrained deformation, as well as the commonly observed crystallographic texture of thin films, places restrictive conditions on the mechanisms of deformation that produce stress relaxation. In narrow aluminum based metallizations used as interconnects in large scale integrated circuits thermal stress induced voiding provides an effective means for stress relaxation. For these interconnects, the stress state is tensile after excursions to higher temperatures; the stresses relax mainly by dislocation glide and grain boundary sliding during the cooldown, while the longer term relaxation is governed by stress-induced voiding and dislocation creep.


2008 ◽  
Vol 41 (7) ◽  
pp. 074022 ◽  
Author(s):  
Per-Lennart Larsson ◽  
Fredrik Wredenberg
Keyword(s):  

2007 ◽  
Vol 561-565 ◽  
pp. 2005-2008
Author(s):  
X.Y. Zhou ◽  
Hai Rong Wang ◽  
Zhuang De Jiang ◽  
Rui Xia Yu

A simple method to extract the intrinsic mechanical properties of the soft metallic thin films on hard substrates by nanoindenation is presented. Utilizing the geometry relationship of residual impressions obtained by the SEM image and the cross-sectional profile, the pile up error in elastic modulus determination of soft thin films by the Oliver and Pharr analysis is first corrected. Knowledge of the ‘true’ elastic modulus, the ‘true’ hardness of thin film is then extracted from the measured contact stiffness data for an elastically homogeneous film-substrate system. The present method is applied for a 504 nm Au thin film sputter deposited on the glass substrate and the results show that the ‘true’ elastic modulus and hardness of Au film are 80 GPa and 1.3 GPa, which are in agreement well with the literatures.


Sign in / Sign up

Export Citation Format

Share Document