Review of Residual Stress Measurement by Magnetic Barkhausen Noise Technique

2018 ◽  
Vol 7 (4) ◽  
pp. 20170080 ◽  
Author(s):  
C. Hakan Gur
2020 ◽  
Vol 62 (7) ◽  
pp. 416-421
Author(s):  
T Kaleli ◽  
C Hakan Gür

Management of the residual stress state is vital for the design and production stages of carburised components in order to satisfy the technical requirements related to performance, fatigue behaviour and useful lifetime. This enforces the use of practical, reliable and time- and cost-effective stress measurement methods by manufacturers. This study aims to investigate the efficiency of the magnetic Barkhausen noise (MBN) method in rapid non-destructive determination of surface residual stresses in carburised steels. A series of AISI 8620 steel specimens with different residual stress states was prepared by altering the carburising and subsequent tempering parameters. The specimens were characterised through scanning electron microscopy (SEM) investigations and hardness measurements, and the surface residual stresses were determined using both the MBN and X-ray diffraction (XRD) methods. The results show that a good correlation exists between surface residual stress and the parameters derived from the MBN signals.


2017 ◽  
Vol 751 ◽  
pp. 213-218
Author(s):  
Mai Noipitak

The Magnetic Barkhausen Noise (MBN) technique can evaluate the residual stresses in carbon steel and provide information about the relationship between residual stress level and MBN signal. This research work is based on the analysis of MBN signals obtained from carbon steel samples. ASTM A36 and A516 carbon steel were used to vary the residual stress by heat treatment process with 5 conditions: annealing, normalizing, quenching in oil, quenching in water and quenching in salt water. The microstructure and hardness of samples also were varied by these heat treatment processes. Twelve samples (including base materials) were cut to analyze the microstructure and hardness by the microscope and hardness testing machine. Reference materials from each condition were established to represent the MBN signals. The MBN technique was used to evaluate the residual stresses from heat treatment process on each reference material. Then each sample was prepared to tensile specimen. All specimens were applied static tension load below yield point. The load was increased at 25 N/mm2 (MPa) in increment. Each tensile stress level was measurement by MBN technique at 0 and 90 degree of direction of tension axis. The experimental results found that the MBN signal amplitude changed as the condition of heat treatment changed and the relationship between tensile stress and MBN signal showed linear correlation. This research is useful to understand and guide for establishing the reference materials for residual stress measurement by MBN technique.


2021 ◽  
Vol 165 ◽  
pp. 107861
Author(s):  
Hao Jiang ◽  
Junjun Liu ◽  
Zhenkun Lei ◽  
Ruixiang Bai ◽  
Zhenfei Guo ◽  
...  

2015 ◽  
Vol 659 ◽  
pp. 623-627 ◽  
Author(s):  
Cherdpong Jomdecha ◽  
Isaratat Phung-On

The objective of this paper is an analysis of statistical discreteness and measurement capability of an eddy-current measurement system for residual stress assessment in stainless steel Grade 304 (SS304). Cylindrical specimens with 50 mm in diameter and 12 mm thickness were prepared to generate residual stress by Resistance Spot Welding at which the welding currents were set at 12, 14, and 16 kA. The eddy-current measurement system was including a probe with frequency range of 0.1 to 3 MHz and an eddy current flaw detector. They were performed by contacting the probe on the specimen. The measurements were performed particularly in the vicinity of heat affected zone (HAZ). In order to determine the results of the residual stress measurement, the calibration curves between static tensile stress and eddy current impedance at various frequencies were accomplished. The Measurement System Analysis (MSA) was utilized to evaluate the changed eddy-current probe impedance from residual stress. The results showed that using eddy current technique at 1 MHz for residual stress measurement was the most efficient. It can be achieved the Gauge Repeatability & Reproducibility %GR&R at 16.61479 and Number of Distinct Categories (NDC) at 8. As applied on actual butt welded joint, it could yield the uncertainty of ± 58 MPa at 95 % (UISO).


Sign in / Sign up

Export Citation Format

Share Document