Designing Recycled Hot Mix Asphalt Mixtures Using Superpave Technology

Author(s):  
PS Kandhal ◽  
KY Foo
2012 ◽  
Vol 174-177 ◽  
pp. 82-90 ◽  
Author(s):  
Ju Nan Shen ◽  
Zhao Xing Xie ◽  
Fei Peng Xiao ◽  
Wen Zhong Fan

The objective of this study was to evaluate the effect of nano-sized hydrated lime on the moisture susceptibility of the hot mix asphalt (HMA) mixtures in terms of three methodologies to introduce into the mixtures. The experimental design for this study included the utilizations of one binder source (PG 64-22), three aggregate sources and three different methods introducing the lime. A total of 12 types of HMA mixtures and 72 specimens were fabricated and tested in this study. The performed properties include indirect tensile strength (ITS), tensile strength ratio (TSR), flow, and toughness. The results indicated that the nano-sized lime exhibits better moisture resistance. Introducing process of the nano-sized lime will produce difference in moisture susceptibility.


2011 ◽  
Vol 2207 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Nathan Morian ◽  
Elie Y. Hajj ◽  
Charles J. Glover ◽  
Peter E. Sebaaly

2020 ◽  
Vol 258 ◽  
pp. 118947 ◽  
Author(s):  
Ki Soo Park ◽  
Touqeer Shoukat ◽  
Pyeong Jun Yoo ◽  
Soo Hyung Lee

2013 ◽  
Vol 46 (12) ◽  
pp. 2045-2057 ◽  
Author(s):  
Mohammad J. Khattak ◽  
Ahmed Khattab ◽  
Pengfei Zhang ◽  
Hashim R. Rizvi ◽  
Thomas Pesacreta

Author(s):  
J. Murali Krishnan ◽  
K. R. Rajagopal

Different kinds of hot mix asphalt mixtures are used in highway and runway constructions. Each of these mixtures cater to specific needs and differ from each other in the type and percentage of aggregates and asphalt used, and their response can be markedly different. Constitutive models used in the literature do not differentiate between these different kinds of mixtures and use models which treat them as if they are one and the same. In this study, we propose constitutive models for two different kinds of hot mix asphalt, viz., asphalt concrete and sand asphalt. We use a framework for materials that possess multiple natural configurations for deriving the constitutive equations. While asphalt concrete is modeled as a two constituent mixture, sand asphalt is modeled as a single constituent mixture due to the peculiarity in its makeup. In this study, we present a unified approach for deriving models for these different kind of mixtures. In a companion paper, we compare the predictions of the model for a compressive creep test with available experimental results.


Sign in / Sign up

Export Citation Format

Share Document