Effect of Cyclic Wetting and Drying on Corrosion of Zinc and Steel

2009 ◽  
pp. 125-125-11 ◽  
Author(s):  
XG Zhang ◽  
HQ Tran
Keyword(s):  
1995 ◽  
Vol 60 (2) ◽  
pp. 172-187 ◽  
Author(s):  
Pavel Fott ◽  
František Kolář ◽  
Zuzana Weishauptová

On carbonizing phenolic resins, the development of porous structure takes place which influences the transport properties of carbonized materials. To give a true picture of this effect, specimens in the shape of plates were prepared and carbonized at various temperatures. The carbonizates obtained were studied by adsorption methods, electron microscopy, and mercury porosimetry. Diffusivities were evaluated in terms of measuring the kinetics of wetting and drying. It was found out that the porous structure of specimens in different stages of carbonization is formed mostly by micropores whose volumes were within 0.06 to 0.22 cm3/g. The maximum micropore volume is reached at the temperature of 750 °C. The dependence of diffusivity on the carbonization temperature is nearly constant at first, begins to increase in the vicinity of 400 °C, and at 600 °C attains its maximum. The experimental results reached are in agreement with the conception of the development and gradual closing of the microporous structure in the course of carbonization. The dependence of diffusivity on temperature can be expressed by the Arrhenius equation. In this connection, two possible models of mass transport were discussed.


Author(s):  
Sougueh Cheik ◽  
Pascal Jouquet ◽  
Jean‐Luc Maeght ◽  
Yvan Capowiez ◽  
T.M. Tran ◽  
...  

2020 ◽  
Vol 148 (3) ◽  
pp. 255-269 ◽  
Author(s):  
Kyungjin Min ◽  
Asmeret Asefaw Berhe ◽  
Chau Minh Khoi ◽  
Hella van Asperen ◽  
Jeroen Gillabel ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1529
Author(s):  
Ahmad Numery Ashfaqul Haque ◽  
Md. Kamal Uddin ◽  
Muhammad Firdaus Sulaiman ◽  
Adibah Mohd Amin ◽  
Mahmud Hossain ◽  
...  

A pot experiment was executed to investigate the impact of biochar and compost with water-saving irrigation on the rice yield, water use efficiency, and physicochemical properties of soil. Two irrigation regimes—namely alternate wetting and drying (AWD) and continuous flooding (CF)—and four types of organic amendments (OA)—namely rice husk biochar (RHB), oil palm empty fruit bunch biochar (EFBB), compost and a control—were applied to evaluate their effects. Under the AWD irrigation regime, the maximum grain was produced by RHB (241.12 g), whereas under the same organic amendments, both AWD and CF produced a similar grain yield. Under the same organic amendment, a significantly higher water use efficiency (WUE) was observed from the AWD irrigation with RHB (6.30 g L−1) and EFBB (5.80 g L−1). Within the same irrigation regime, soil pH, cation exchange capacity, total carbon, total nitrogen and available phosphorus were enhanced due to the incorporation of biochar and compost, while higher soil exchangeable potassium was observed under CF irrigation for all treatments. RHB and EFBB significantly reduced the soil bulk density (up to 20.70%) and increased porosity (up to 16.70%) under both irrigation regimes. The results imply that the use of biochar with AWD irrigation could enhance the nutrient uptake and physicochemical properties of soil and allow rice to produce a greater yield with less water consumption.


2021 ◽  
Vol 247 ◽  
pp. 106758
Author(s):  
Komlavi Akpoti ◽  
Elliott R. Dossou-Yovo ◽  
Sander J. Zwart ◽  
Paul Kiepe

2019 ◽  
Vol 78 (6) ◽  
Author(s):  
Xiaojie Yang ◽  
Jiamin Wang ◽  
Chun Zhu ◽  
Manchao He ◽  
Yang Gao

Sign in / Sign up

Export Citation Format

Share Document