The potential for expansion of irrigated rice under alternate wetting and drying in Burkina Faso

2021 ◽  
Vol 247 ◽  
pp. 106758
Author(s):  
Komlavi Akpoti ◽  
Elliott R. Dossou-Yovo ◽  
Sander J. Zwart ◽  
Paul Kiepe
2019 ◽  
Vol 83 (5) ◽  
pp. 1533-1541 ◽  
Author(s):  
Nimlesh Balaine ◽  
Daniela R. Carrijo ◽  
M. Arlene Adviento-Borbe ◽  
Bruce Linquist

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6040
Author(s):  
Mushran Siddiqui ◽  
Farhana Akther ◽  
Gazi M. E. Rahman ◽  
Mohammad Mamun Elahi ◽  
Raqibul Mostafa ◽  
...  

Water, one of the most valuable resources, is underutilized in irrigated rice production. The yield of rice, a staple food across the world, is highly dependent on having proper irrigation systems. Alternate wetting and drying (AWD) is an effective irrigation method mainly used for irrigated rice production. However, unattended, manual, small-scale, and discrete implementations cannot achieve the maximum benefit of AWD. Automation of large-scale (over 1000 acres) implementation of AWD can be carried out using wide-area wireless sensor network (WSN). An automated AWD system requires three different WSNs: one for water level and environmental monitoring, one for monitoring of the irrigation system, and another for controlling the irrigation system. Integration of these three different WSNs requires proper dimensioning of the AWD edge elements (sensor and actuator nodes) to reduce the deployment cost and make it scalable. Besides field-level monitoring, the integration of external control parameters, such as real-time weather forecasts, plant physiological data, and input from farmers, can further enhance the performance of the automated AWD system. Internet of Things (IoT) can be used to interface the WSNs with external data sources. This research focuses on the dimensioning of the AWD system for the multilayer WSN integration and the required algorithms for the closed loop control of the irrigation system using IoT. Implementation of the AWD for 25,000 acres is shown as a possible use case. Plastic pipes are proposed as the means to transport and control proper distribution of water in the field, which significantly helps to reduce conveyance loss. This system utilizes 250 pumps, grouped into 10 clusters, to ensure equal water distribution amongst the users (field owners) in the wide area. The proposed automation algorithm handles the complexity of maintaining proper water pressure throughout the pipe network, scheduling the pump, and controlling the water outlets. Mathematical models are presented for proper dimensioning of the AWD. A low-power and long-range sensor node is developed due to the lack of cellular data coverage in rural areas, and its functionality is tested using an IoT platform for small-scale field trials.


2017 ◽  
Vol 64 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Evangeline B. Sibayan ◽  
Kristine Samoy-Pascual ◽  
Filomena S. Grospe ◽  
Mark Everson D. Casil ◽  
Takeshi Tokida ◽  
...  

2021 ◽  
Vol 58 (1) ◽  
pp. 33-42
Author(s):  
M Jeya Bharathi ◽  
M Raju ◽  
S Elamathi

Rice is a prime food crop for Asian countries. Wet land rice cultivation contributes maximum grain yield than dry land rice. Cauvery delta is a predominant area for rice cultivation in Tamil Nadu. Green algae growth during Kuruvai (June -August) season is a serious problem in wet land rice. These algae growth create anaerobic condition and prevent rice root respiration. The entire rice root was uprooted and floated on the stagnated water during initial stage. There is no preliminary study for green algae control in rice field. Soil and water samples were collected and analyzed for the nature of occurrence. Laboratory and field experiments were conducted to find out the remedial measures. The results of soil and water sample analysis showed that use of bore well water and dumping of phosphatic fertilizers leads to salt accumulation which favours the green algal growth. The results of the laboratory experiment revealed that the CuSO4 londox power, propiconazole and hexaconazole showed moderate inhibition on 5th day after treatment. The findings from field experiment indicated that use of conoweeder, alternate wetting and drying and CuSo4 drenching @ of 2.5 kg/ha when green algae appearance has just noticed or 5.0 kg/ha when severe growth occurred was effective in managing the green algae. Among all measures, alternate wetting and drying is the best management practices. CuSO4 drenching reduces around 70% of the growth. Even though CuSO4 react negatively with algae growth, soil pH changes and salt concentration play a major role on the CuSO4 action towards green algae. In order to maintain soil health condition, biofertilizer application, crop rotation, green manure trampling to be practised to recover the soil from alkaline pH, removal of accumulated salt and to control the algae growth using CuSO4.


Sign in / Sign up

Export Citation Format

Share Document