Displacive and Diffusional Transformations of the Beta Phase in Zirconium Alloys

Author(s):  
S. Banerjee
Keyword(s):  

2011 ◽  
Vol 172-174 ◽  
pp. 753-759 ◽  
Author(s):  
Jean Christophe Brachet ◽  
Caroline Toffolon-Masclet ◽  
Didier Hamon ◽  
Thomas Guilbert ◽  
Gwenaël Trego ◽  
...  

Due to their adequate properties, zirconium alloys are the reference materials for the nuclear fuel cladding tubes of Light Water Reactors (LWR). During some hypothetical accidental High Temperature (HT) transients, the materials should experience heavy steam oxidation and deep metallurgical evolutions. This promotes Alpha-Beta phase transformations and an associated strong partitioning of oxygen/hydrogen and of the main chemical alloying elements (Nb, Sn, Fe and Cr). Moreover, it has been shown quite recently that such chemical elements partitioning during on-cooling Beta-to-Alpha transformation can strongly impact the residual mechanical properties of HT oxidized materials. Thus, it appeared that it was important to better quantify and, if possible, to compute the quite complex phase equilibrium that occurs in multi-alloyed zirconium materials in the presence of both oxygen and hydrogen. For that, systematic studies have been performed on industrial alloys, charged with oxygen and/or hydrogen. After applying different heating/cooling scenarii, both Electron Microprobe using Wave Dispersive Spectrometry (WDS) and Nuclear Microprobe using Elastic Recoil Detection Analysis (ERDA) have been applied. Finally, to support the observed chemical elements partitioning between the Alpha and Beta allotropic phases, some thermodynamic calculations have been performed thanks to the development and the use of a specific thermodynamic database for zirconium alloys called “Zircobase".



2020 ◽  
Vol 86 (8) ◽  
pp. 32-37
Author(s):  
V. V. Larionov ◽  
Xu Shupeng ◽  
V. N. Kudiyarov

Nickel films formed on the surface of zirconium alloys are often used to protect materials against hydrogen penetration. Hydrogen adsorption on nickel is faster since the latter actively interacts with hydrogen, oxidizes and forms a protective film. The goal of the study is to develop a method providing control of hydrogen absorption by nickel films during vacuum-magnetron sputtering and hydrogenation via measuring thermoEMF. Zirconium alloy E110 was saturated from the gas phase with hydrogen at a temperature of 350°C and a pressure of 2 atm. A specialized Rainbow Spectrum unit was used for coating. It is shown that a nickel film present on the surface significantly affects the hydrogen penetration into the alloy. A coating with a thickness of more than 2 μm deposited by magnetron sputtering on the surface of a zirconium alloy with 1% Nb, almost completely protects the alloy against hydrogen penetration. The magnitude of thermoemf depends on the hydrogen concentration in the zirconium alloy and film thickness. An analysis of the hysteresis width of the thermoEMF temperature loop and a method for determining the effective activation energy of the conductivity of a hydrogenated material coated with a nickel film are presented. The results of the study can be used in assessing the hydrogen concentration and, hence, corrosion protection of the material.



2014 ◽  
Vol 51 (9) ◽  
pp. 656-674 ◽  
Author(s):  
A. V. Flores ◽  
A. G. Gomez ◽  
G. A. Juarez ◽  
N. Loureiro ◽  
R. I. Samper ◽  
...  
Keyword(s):  


1988 ◽  
Author(s):  
H. I. Aaronson ◽  
A. M. Dalley ◽  
T. Furuhara ◽  
Y. Mou


1990 ◽  
Author(s):  
H. I. Aaronson ◽  
Y. Mou ◽  
M. G. Hall


2020 ◽  
Author(s):  
Chi-Toan Nguyen ◽  
Alistair Garner ◽  
Javier Romero ◽  
Antoine Ambard ◽  
Michael Preuss ◽  
...  


Author(s):  
H. G. Spilker ◽  
Roman Bender
Keyword(s):  




2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christopher Jones ◽  
Vidur Tuli ◽  
Zaheen Shah ◽  
Mhairi Gass ◽  
Patrick A. Burr ◽  
...  

AbstractZirconium alloys are used in safety–critical roles in the nuclear industry and their degradation due to ingress of hydrogen in service is a concern. In this work experimental evidence, supported by density functional theory modelling, shows that the α-Zr matrix surrounding second phase particles acts as a trapping site for hydrogen, which has not been previously reported in zirconium. This is unaccounted for in current models of hydrogen behaviour in Zr alloys and as such could impact development of these models. Zircaloy-2 and Zircaloy-4 samples were corroded at 350 °C in simulated pressurised water reactor coolant before being isotopically spiked with 2H2O in a second autoclave step. The distribution of 2H, Fe and Cr was characterised using nanoscale secondary ion mass spectrometry (NanoSIMS) and high-resolution energy dispersive X-ray spectroscopy. 2H− was found to be concentrated around second phase particles in the α-Zr lattice with peak hydrogen isotope ratios of 2H/1H = 0.018–0.082. DFT modelling confirms that the hydrogen thermodynamically favours sitting in the surrounding zirconium matrix rather than within the second phase particles. Knowledge of this trapping mechanism will inform the development of current understanding of zirconium alloy degradation through-life.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. R. Massih ◽  
Lars O. Jernkvist

AbstractWe present a kinetic model for solid state phase transformation ($$\alpha \rightleftharpoons \beta$$ α ⇌ β ) of common zirconium alloys used as fuel cladding material in light water reactors. The model computes the relative amounts of $$\beta$$ β or $$\alpha$$ α phase fraction as a function of time or temperature in the alloys. The model accounts for the influence of excess oxygen (due to oxidation) and hydrogen concentration (due to hydrogen pickup) on phase transformation kinetics. Two variants of the model denoted by A and B are presented. Model A is suitable for simulation of laboratory experiments in which the heating/cooling rate is constant and is prescribed. Model B is more generic. We compare the results of our model computations, for both A and B variants, with accessible experimental data reported in the literature covering heating/cooling rates of up to 100 K/s. The results of our comparison are satisfactory, especially for model A. Our model B is intended for implementation in fuel rod behavior computer programs, applicable to a reactor accident situation, in which the Zr-based fuel cladding may go through $$\alpha \rightleftharpoons \beta$$ α ⇌ β phase transformation.



Sign in / Sign up

Export Citation Format

Share Document