Thermomechanical Testing of High-Temperature Composites: Thermomechanical Fatigue (TMF) Behavior of SiC(SCS-6)/Ti-15-3

Author(s):  
MG Castelli ◽  
P Bartolotta ◽  
JR Ellis
2019 ◽  
Vol 29 (2) ◽  
pp. 226-245 ◽  
Author(s):  
Tadashi Masuoka ◽  
Jörg R Riccius

The inner liner of a combustion chamber of a cryogenic liquid rocket engine is exposed to a high load induced by the high temperature of the hot gas and the low temperature of the coolant. The high load causes some inelastic strain that accumulates with each operational cycle until the fracture or rupture of the inner liner. A model that can reproduce the propagation of damage under a thermally cycled load is essential for precisely predicting the chamber life. However, the damage propagation phenomenon or the quantitative value of the damage was so far not fully discussed using the damage data obtained from basic testing of a rocket chamber material. The purpose of the present study was to investigate a precise prediction model based on damage mechanics for simulating the damage propagation of a rocket chamber material. In this study, low cycle fatigue test data at a high temperature (900 K) were analyzed, and damage models that could reproduce the damage propagation under cyclic load conditions were investigated. Then the parameters were identified to reproduce uniaxial test data. These damage models were also subject to a finite element method analysis of a thermomechanical fatigue panel test in order to quantitatively evaluate the deformation, damage propagation, and life of a chamber wall. The analysis of low cycle fatigue test data at 900 K suggested a specific model that could precisely reproduce the damage propagation phenomenon and the basic material test data. From the results, it was confirmed that the model could predict the location of crack initiation.


Author(s):  
Janet Hurst

Advanced gas turbine engine designs continue to push into regimes of higher operating temperatures and increased pressures. Materials capable of functioning under these extreme conditions have been sought by both government and industry. As part of its mission, the NASA Transformational Tools and Technologies (TTT) Project, under the auspices of NASA’s Aeronautics Research Mission Directorate (ARMD), has been pursuing high temperature materials development with the performance goal of 2700°F (1482°C) operation. This goal has evolved into a focused three year Technology Challenge which is nearing its conclusion. This challenge problem has sought to develop high temperature materials for turbine engines which will enable a 6% reduction in fuel burn for commercial aircraft as compared to the current generation. This ambitious effort has included ceramic matrix composite (CMC) compositions, architectures and processing as well as environmental barrier coating compositions (EBC) and processing routes. It has included collaborators and materials suppliers from both industry and academia. The development and validation of thermomechanical models and computational tools for design, analysis, and life prediction have been an important part of this effort. Evaluation of CMC/EBCs included various aspects of thermomechanical testing from coupon testing for strength and creep resistance, to materials evaluation under conditions similar to aspects of engine operation. Simulated engine testing of airfoil subcomponents in a P&W test rig is the final evaluation step following years of materials development. As this three year Technical Challenge concludes, plans are under development for continued environmental durability investigation of CMC/EBC systems accompanied by validated durability modeling.


Sign in / Sign up

Export Citation Format

Share Document