Creep-Fatigue Interaction during Crack Growth

2009 ◽  
pp. 157-157-9
Author(s):  
PN Atanmo ◽  
AJ McEvily
Keyword(s):  
2010 ◽  
Vol 4 (9) ◽  
pp. 1410-1426 ◽  
Author(s):  
Tae Wuk WOO ◽  
Masao SAKANE ◽  
Kwang Soo KIM ◽  
Kaoru KOBAYASHI ◽  
Hyun Chul PARK

2007 ◽  
Vol 353-358 ◽  
pp. 485-490 ◽  
Author(s):  
Y.M. Baik ◽  
K.S. Kim

Crack growth in compact specimens of type 304 stainless steel is studied at 538oC. Loading conditions include pure fatigue loading, static loading and fatigue loading with hold time. Crack growth rates are correlated with the stress intensity factor. A finite element analysis is performed to understand the crack tip field under creep-fatigue loading. It is found that fatigue loading interrupts stress relaxation around the crack tip and cause stress reinstatement, thereby accelerating crack growth compared with pure static loading. An effort is made to model crack growth rates under combined influence of creep and fatigue loading. The correlation with the stress intensity factor is found better when da/dt is used instead of da/dN. Both the linear summation rule and the dominant damage rule overestimate crack growth rates under creep-fatigue loading. A model is proposed to better correlate crack growth rates under creep-fatigue loading: 1 c f da da da dt dt dt Ψ −Ψ     =         , where Ψ is an exponent determined from damage under pure fatigue loading and pure creep loading. This model correlates crack growth rates for relatively small loads and low stress intensity factors. However, correlation becomes poor as the crack growth rate becomes large under a high level of load.


Author(s):  
Lei Zhao ◽  
Lianyong Xu

Creep-fatigue interaction would accelerate the crack growth behaviour and change the crack growth mode, which is different from that presenting in pure creep or fatigue regimes. In addition, the constraint ahead of crack tip affects the relationship between crack growth rate and fracture mechanics and thus affects the accuracy of the life prediction for high-temperature components containing defects. In this study, to reveal the role of constraint caused by various specimen geometries in the creep-fatigue regime, five different types of cracked specimens (including C-ring in tension CST, compact tension CT, single notch tension SENT, single notch bend SENB, middle tension MT) were employed. The crack growth and damage evolution behaviours were simulated using finite element method based on a non-linear creep-fatigue interaction damage model considering creep damage, fatigue damage and interaction damage. The expression of (Ct)avg for different specimen geometries were given. Then, the variation of crack growth behaviour with various specimen geometries under creep-fatigue conditions were analysed. CT and CST showed the highest crack growth rates, which were ten times as the lowest crack growth rates in MT. This revealed that distinctions in specimen geometry influenced the in-plane constraint level ahead of crack tip. Furthermore, a load-independent constraint parameter Q* was introduced to correlate the crack growth rate. The sequence of crack growth rate at a given value of (Ct)avg was same to the reduction of Q*, which shown a linear relation in log-log curve.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 651
Author(s):  
Jianxing Mao ◽  
Zhixing Xiao ◽  
Dianyin Hu ◽  
Xiaojun Guo ◽  
Rongqiao Wang

The creep-fatigue crack growth problem remains challenging since materials exhibit different linear and nonlinear behaviors depending on the environmental and loading conditions. In this paper, we systematically carried out a series of creep-fatigue crack growth experiments to evaluate the influence from temperature, stress ratio, and dwell time for the nickel-based superalloy GH4720Li. A transition from coupled fatigue-dominated fracture to creep-dominated fracture was observed with the increase of dwell time at 600 °C, while only the creep-dominated fracture existed at 700 °C, regardless of the dwell time. A concise binomial crack growth model was constructed on the basis of existing phenomenal models, where the linear terms are included to express the behavior under pure creep loading, and the nonlinear terms were introduced to represent the behavior near the fracture toughness and during the creep-fatigue interaction. Through the model implementation and validation of the proposed model, the correlation coefficient is higher than 0.9 on ten out of twelve sets of experimental data, revealing the accuracy of the proposed model. This work contributes to an enrichment of creep-fatigue crack growth data in the typical nickel-based superalloy at elevated temperatures and could be referable in the modeling for damage tolerance assessment of turbine disks.


Sign in / Sign up

Export Citation Format

Share Document