scholarly journals Theta Oscillations Organize Spiking Activity in Higher-Order Visual Thalamus during Sustained Attention

eNeuro ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. ENEURO.0384-17.2018 ◽  
Author(s):  
Chunxiu Yu ◽  
Yuhui Li ◽  
Iain M. Stitt ◽  
Zhe Charles Zhou ◽  
Kristin K. Sellers ◽  
...  
2017 ◽  
Author(s):  
Chunxiu Yu ◽  
Iain M. Stitt ◽  
Yuhui Li ◽  
Zhe Charles Zhou ◽  
Kristin K. Sellers ◽  
...  

AbstractHigher-order visual thalamus plays a fundamental but poorly understood role in attention-demanding tasks. To investigate how neuronal dynamics in higher-order visual thalamus are modulated by sustained attention, we performed multichannel electrophysiological recordings in the lateral posterior-pulvinar complex (LP/pulvinar) in the ferret (Mustela putorius furo). We recorded single unit activity and local field potential during the performance of the 5-choice serial reaction time task (5-CSRTT) that is used in both humans and animals as an assay of sustained attention. We found that half of the units exhibited an increasing firing rate during the delay period before stimulus onset (attention-modulated units). In contrast, the non-attention-modulated units responded to the stimulus, but not during the delay period. Spike-field coherence of only the attention-modulated neurons significantly increased from the start of the delay period until screen touch, predominantly in the theta frequency band. In addition, theta power and theta-gamma phase-amplitude coupling were elevated throughout the delay period. Our findings suggest that the theta oscillation plays a central role in orchestrating thalamic signaling during sustained attention.SignificanceImpaired sustained attention can be deadly, as illustrated by the number of motor vehicle accidents that are caused by drivers not reacting quickly enough to unexpected events on the road. Understanding how electrical signaling in higher-order visual nuclei, such as the LP/pulvinar, is modulated during tasks that require sustained attention is an important step in achieving a mechanistic understanding of sustained attention, which will eventually lead to new strategies to prevent and treat impairment in sustained attention.


2008 ◽  
Vol 29 (4) ◽  
pp. 205-216 ◽  
Author(s):  
Stefan Krumm ◽  
Lothar Schmidt-Atzert ◽  
Kurt Michalczyk ◽  
Vanessa Danthiir

Mental speed (MS) and sustained attention (SA) are theoretically distinct constructs. However, tests of MS are very similar to SA tests that use time pressure as an impeding condition. The performance in such tasks largely relies on the participants’ speed of task processing (i.e., how quickly and correctly one can perform the simple cognitive tasks). The present study examined whether SA and MS are empirically the same or different constructs. To this end, 24 paper-pencil and computerized tests were administered to 199 students. SA turned out to be highly related to MS task classes: substitution and perceptual speed. Furthermore, SA showed a very close relationship with the paper-pencil MS factor. The correlation between SA and computerized speed was considerably lower but still high. In a higher-order general speed factor model, SA had the highest loading on the higher-order factor; the higher-order factor explained 88% of SA variance. It is argued that SA (as operationalized with tests using time pressure as an impeding condition) and MS cannot be differentiated, at the level of broad constructs. Implications for neuropsychological assessment and future research are discussed.


2019 ◽  
Author(s):  
Hio-Been Han ◽  
Ka Eun Lee ◽  
Jee Hyun Choi

ABSTRACTTheta-band (4–12 Hz) activities in the frontal cortex have been thought to be a key mechanism of sustained attention and goal-related behaviors, forming a phase-coherent network with task-related sensory cortices for integrated neuronal ensembles. However, recent visual task studies found that selective attention attenuates stimulus-related theta power in the visual cortex, suggesting a functional dissociation of cortical theta oscillations. To investigate this contradictory behavior of cortical theta, a visual Go/No-Go task was performed with electroencephalogram recording in mice. During the No-Go period, transient theta oscillations were observed in both the frontal and visual cortices, but theta oscillations of the two areas were prominent in different trial epochs. By separating trial epochs based on subjects’ short-term performance, we found that frontal theta was prominent in good-performance epochs, while visual theta was prominent in bad-performance epochs, exhibiting a functional dissociation of cortical theta rhythms. Furthermore, the two theta rhythms also showed a heterogeneous pattern of phase-amplitude coupling with fast oscillations, reflecting their distinct architecture in underlying neuronal circuitry. Interestingly, in good-performance epochs, where visual theta was relatively weak, stronger fronto-visual long-range synchrony and shorter posterior-to-anterior temporal delay were found. These findings highlight a previously overlooked aspect of long-range synchrony between distinct oscillatory entities in the cerebral cortex and provide empirical evidence of a functional dissociation of cortical theta rhythms.IN BRIEFPrevious literature emphasized the pro-cognitive role of coherent oscillatory networks between distal brain regions, such as the fronto-visual theta synchrony. However, such a conceptual framework has been challenged as recent findings revealed distinct behavioral correlates of theta oscillations found in different cortical regions, especially in the frontal and visual cortices. Here, we show that frontal and visual theta represent distinct cortical processes and that the functional connectivity between them increases during sustained attention, especially when one of the two theta rhythms is relatively suppressed. The data presented here highlight a novel aspect of neural long-range synchrony between distinct cortical oscillators with distinct functional significance in task performance.


2021 ◽  
Vol 168 ◽  
pp. S98-S99
Author(s):  
Zehra Ülgen ◽  
Mert Küçük ◽  
Christina Schmiedt-Fehr ◽  
Canan Başar-Eroğlu

2019 ◽  
Author(s):  
Kyle Bojanek ◽  
Yuqing Zhu ◽  
Jason MacLean

AbstractMany studies have demonstrated the prominence of higher-order patterns in excitatory synaptic connectivity as well as activity in neocortex. Surveyed as a whole, these results suggest that there may be an essential role for higher-order patterns in neocortical function. In order to stably propagate signal within and between regions of neocortex, the most basic - yet nontrivial - function which neocortical circuitry must satisfy is the ability to maintain stable spiking activity over time. Here we algorithmically construct spiking neural network models comprised of 5000 neurons using topological statistics from neocortex and a set of objective functions that identify networks which produce naturalistic low-rate, asynchronous, and critical activity. We find that the same network topology can exhibit either sustained activity under one set of initial membrane voltages or truncated activity under a different set. Yet these two outcomes are not readily differentiated by rate or criticality. By summarizing the statistical dependencies in the pairwise activity of neurons as directed weighted functional networks, we examined the transient manifestations of higher-order motifs in the functional networks across time. We find that stereotyped low variance cyclic transitions between three isomorphic triangle motifs, quantified as a Markov process, are required for sustained activity. If the network fails to engage the dynamical regime characterized by a recurring stable pattern of motif dominance, spiking activity ceased. Motif cycling generalized across manipulations of synaptic weights and across topologies, demonstrating the robustness of this dynamical regime for sustained spiking in critical asynchronous network activity. Our results point to the necessity of higher-order patterns amongst excitatory connections for sustaining activity in sparse recurrent networks. They also provide a possible explanation as to why such excitatory synaptic connectivity and activity patterns have been prominently reported in neocortex.Author summaryHere we address two questions. First, it remains unclear how activity propagates stably through a network since neurons are leaky and connectivity is sparse and weak. Second, higher order patterns abound in neocortex, hinting at potential functional relevance for their presence. Several lines of evidence suggest that higher-order network interactions may be instrumental for spike propagation. For example, excitatory synaptic connectivity shows a prevalence of local neuronal cliques and patterns, and propagating activity in vivo displays elevated clustering dominated by specific triplet motifs. In this study we demonstrate a mechanistic link between activity propagation and higher-order motifs at the level of individual neurons and across networks. We algorithmically build spiking neural network (SNN) models to mirror the topological and dynamical statistics of neocortex. Using a combination of graph theory, information theory, and probabilistic tools, we show that higher order coordination of synapses is necessary for sustaining activity. Coordination takes the form of cyclic transitions between specific triangle motifs. The results of our model are consistent with numerous experimental observations in neuroscience, and their generalizability to other weakly and sparsely connected networks is predicted.


2019 ◽  
Author(s):  
Megan A. Kirchgessner ◽  
Alexis D. Franklin ◽  
Edward M. Callaway

AbstractLayer 6 (L6) is the sole purveyor of corticothalamic (CT) feedback to first-order thalamus and also sends projections to higher-order thalamus, yet how it engages the full corticothalamic circuit to contribute to sensory processing in an awake animal remains unknown. We sought to elucidate the functional impact of L6CT projections from primary visual cortex to visual thalamic nuclei dLGN (first-order) and pulvinar (higher-order) using optogenetics and extracellular electrophysiology in awake mice. While sustained L6CT photostimulation suppresses activity in both visual thalamic nuclei in vivo, moderate-frequency (10Hz) stimulation powerfully facilitates thalamic spiking. We show that each stimulation paradigm differentially influences the balance between monosynaptic excitatory and disynaptic inhibitory corticothalamic pathways to dLGN and pulvinar as well as the prevalence of burst versus tonic firing. Altogether, our results support a model in which L6CTs modulate first- and higher-order thalamus through parallel excitatory and inhibitory pathways that are highly dynamic and context-dependent.SignificanceLayer 6 corticothalamic (L6CT) projections play important modulatory roles in thalamic processing, yet how this modulation is executed is unclear. While some studies suggest fundamentally inhibitory influence of L6CTs over first-order thalamus, potential complex, frequency-dependent effects have not been investigated in vivo. Moreover, how L6CTs affect higher-order nuclei in vivo has not been explored. This study utilizes various optogenetic manipulations of L6CTs with single-unit recordings from multiple thalamic nuclei in awake mice to address these questions. Our results illustrate similar effects of L6CTs on first- and higher-order visual thalamic nuclei, yet very different effects within-nucleus depending on how L6CTs are engaged. These findings suggest that L6CT modulation is not simply inhibitory by nature, but instead is dynamic and context-dependent.


2020 ◽  
Vol 117 (23) ◽  
pp. 13066-13077 ◽  
Author(s):  
Megan A. Kirchgessner ◽  
Alexis D. Franklin ◽  
Edward M. Callaway

Layer 6 (L6) is the sole purveyor of corticothalamic (CT) feedback to first-order thalamus and also sends projections to higher-order thalamus, yet how it engages the full corticothalamic circuit to contribute to sensory processing in an awake animal remains unknown. We sought to elucidate the functional impact of L6CT projections from the primary visual cortex to the dorsolateral geniculate nucleus (first-order) and pulvinar (higher-order) using optogenetics and extracellular electrophysiology in awake mice. While sustained L6CT photostimulation suppresses activity in both visual thalamic nuclei in vivo, moderate-frequency (10 Hz) stimulation powerfully facilitates thalamic spiking. We show that each stimulation paradigm differentially influences the balance between monosynaptic excitatory and disynaptic inhibitory corticothalamic pathways to the dorsolateral geniculate nucleus and pulvinar, as well as the prevalence of burst versus tonic firing. Altogether, our results support a model in which L6CTs modulate first- and higher-order thalamus through parallel excitatory and inhibitory pathways that are highly dynamic and context-dependent.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jinwen Wei ◽  
Zhiguo Zhang ◽  
Ziqing Yao ◽  
Dong Ming ◽  
Peng Zhou

Theta oscillations over the posterior medial frontal cortex (pMFC) and lateral prefrontal cortex (LPFC) play vital roles in sustained attention. Specifically, pMFC power and pMFC-LPFC synchronization correlate with cognitive control in sustained-attention-related tasks, but the causal relationships remain unknown. In the present study, we first analyzed the correlation between EEG theta oscillations (characterized by time-frequency power and phase-based connectivity) and the level of sustained attention (Experiment 1) and then utilized transcranial alternating current stimulation (tACS) to modulate theta oscillations and in turn observed its effects on sustained attention (Experiment 2). In Experiment 1, two time-frequency regions of interest (ROIs) were determined, in which high/low time-frequency power and high/low phase-based connectivity corresponded to high/low-level sustained attention. In Experiment 2, time-frequency power and phase-based connectivity of theta oscillations were compared between the sham and tACS groups within the time-frequency ROIs determined in Experiment 1. Results showed that phase-based connectivity between pMFC and LPFC significantly decreased in the tACS group compared with the sham group during the first five minutes of the poststimulation period. Moreover, a marginal trend existed that sustained attention was downregulated by tACS in the same time interval, suggesting that theta phase synchronization between pMFC and LPFC may play a causal role in sustained attention.


Sign in / Sign up

Export Citation Format

Share Document