scholarly journals Preictal Activity of Subicular, CA1, and Dentate Gyrus Principal Neurons in the Dorsal Hippocampus before Spontaneous Seizures in a Rat Model of Temporal Lobe Epilepsy

2014 ◽  
Vol 34 (50) ◽  
pp. 16671-16687 ◽  
Author(s):  
S. Fujita ◽  
I. Toyoda ◽  
A. K. Thamattoor ◽  
P. S. Buckmaster
2008 ◽  
Vol 99 (5) ◽  
pp. 2431-2442 ◽  
Author(s):  
Mark R. Bower ◽  
Paul S. Buckmaster

Although much is known about persistent molecular, cellular, and circuit changes associated with temporal lobe epilepsy, mechanisms of seizure onset remain unclear. The dentate gyrus displays many persistent epilepsy-related abnormalities and is in the mesial temporal lobe where seizures initiate in patients. However, little is known about seizure-related activity of individual neurons in the dentate gyrus. We used tetrodes to record action potentials of multiple, single granule cells before and during spontaneous seizures in epileptic pilocarpine-treated rats. Subsets of granule cells displayed four distinct activity patterns: increased firing before seizure onset, decreased firing before seizure onset, increased firing only after seizure onset, and unchanged firing rates despite electrographic seizure activity in the immediate vicinity. No cells decreased firing rate immediately after seizure onset. During baseline periods between seizures, action potential waveforms and firing rates were similar among the four subsets of granule cells in epileptic rats and in granule cells of control rats. The mean normalized firing rate of granule cells whose firing rates increased before seizure onset deviated from baseline earliest, beginning 4 min before dentate gyrus electrographic seizure onset, and increased progressively, more than doubling by seizure onset. It is generally assumed that neuronal firing rates increase abruptly and synchronously only when electrographic seizures begin. However, these findings show heterogeneous and gradually building changes in activity of individual granule cells minutes before spontaneous seizures.


2012 ◽  
Vol 234 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Julia Matzen ◽  
Katharina Buchheim ◽  
Martin Holtkamp

2013 ◽  
Vol 54 ◽  
pp. 492-498 ◽  
Author(s):  
Premysl Jiruska ◽  
Anan B.Y. Shtaya ◽  
David M.S. Bodansky ◽  
Wei-Chih Chang ◽  
William P. Gray ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karolina Nizinska ◽  
Kinga Szydlowska ◽  
Avgoustinos Vouros ◽  
Anna Kiryk ◽  
Aleksandra Stepniak ◽  
...  

AbstractThe present study performed a detailed analysis of behavior in a rat model of epilepsy using both established and novel methodologies to identify behavioral impairments that may differentiate between animals with a short versus long latency to spontaneous seizures and animals with a low versus high number of seizures. Temporal lobe epilepsy was induced by electrical stimulation of the amygdala. Rats were stimulated for 25 min with 100-ms trains of 1-ms biphasic square-wave pluses that were delivered every 0.5 s. Electroencephalographic recordings were performed to classify rats into groups with a short latency (< 20 days, n = 7) and long latency (> 20 days, n = 8) to the first spontaneous seizure and into groups with a low number of seizures (62 ± 64.5, n = 8) and high number of seizures (456 ± 185, n = 7). To examine behavioral impairments, we applied the following behavioral tests during early and late stages of epilepsy: behavioral hyperexcitability, open field, novel object exploration, elevated plus maze, and Morris water maze. No differences in stress levels (e.g., touch response in the behavioral hyperexcitability test), activity (e.g., number of entries into the open arms of the elevated plus maze), or learning (e.g., latency to find the platform in the Morris water maze test during training days) were observed between animals with a short versus long latency to develop spontaneous seizures or between animals with a low versus high number of seizures. However, we found a higher motor activity measured by higher number of entries into the closed arms of the elevated plus maze at week 26 post-stimulation in animals with a high number of seizures compared with animals with a low number of seizures. The analysis of the Morris water maze data categorized the strategies that the animals used to locate the platform showing that the intensity of epilepsy and duration of epileptogenesis influenced swimming strategies. These findings indicate that behavioral impairments were relatively mild in the present model, but some learning strategies may be useful biomarkers in preclinical studies.


Sign in / Sign up

Export Citation Format

Share Document