scholarly journals IGF-1R Reduction Triggers Neuroprotective Signaling Pathways in Spinal Muscular Atrophy Mice

2015 ◽  
Vol 35 (34) ◽  
pp. 12063-12079 ◽  
Author(s):  
O. Biondi ◽  
J. Branchu ◽  
A. Ben Salah ◽  
L. Houdebine ◽  
L. Bertin ◽  
...  
2021 ◽  
Vol 118 (18) ◽  
pp. e2007785118
Author(s):  
Niko Hensel ◽  
Federica Cieri ◽  
Pamela Santonicola ◽  
Ines Tapken ◽  
Tobias Schüning ◽  
...  

Spinal muscular atrophy (SMA) is a motoneuron disease caused by deletions of the Survival of Motoneuron 1 gene (SMN1) and low SMN protein levels. SMN restoration is the concept behind a number of recently approved drugs which result in impressive yet limited effects. Since SMN has already been enhanced in treated patients, complementary SMN-independent approaches are needed. Previously, a number of altered signaling pathways which regulate motoneuron degeneration have been identified as candidate targets. However, signaling pathways form networks, and their connectivity is still unknown in SMA. Here, we used presymptomatic SMA mice to elucidate the network of altered signaling in SMA. The SMA network is structured in two clusters with AKT and 14-3-3 ζ/δ in their centers. Both clusters are connected by B-Raf as a major signaling hub. The direct interaction of B-Raf with 14-3-3 ζ/δ is important for an efficient neurotrophic activation of the MEK/ERK pathway and crucial for motoneuron survival. Further analyses in SMA mice revealed that both proteins were down-regulated in motoneurons and the spinal cord with B-Raf being reduced at presymptomatic stages. Primary fibroblasts and iPSC-derived motoneurons from SMA patients both showed the same pattern of down-regulation. This mechanism is conserved across species since a Caenorhabditis elegans SMA model showed less expression of the B-Raf homolog lin-45. Accordingly, motoneuron survival was rescued by a cell autonomous lin-45 expression in a C. elegans SMA model resulting in improved motor functions. This rescue was effective even after the onset of motoneuron degeneration and mediated by the MEK/ERK pathway.


Author(s):  
Jeetendra P. Sah ◽  
Aaron W. Abrams ◽  
Geetha Chari ◽  
Craig Linden ◽  
Yaacov Anziska

AbstractIn this article, we reported a case of spinal muscular atrophy (SMA) type I noted to have tetraventricular hydrocephalus with Blake's pouch cyst at 8 months of age following intrathecal nusinersen therapy. The association of hydrocephalus with SMA is rarely reported in the literature. Development of hydrocephalus after intrathecal nusinersen therapy is also reported in some cases, but a cause–effect relationship is not yet established. The aim of this study was to describe the clinical characteristics of a patient with SMA type I and hydrocephalus, to review similar cases reported in the literature, and to explore the relationship between nusinersen therapy and development of hydrocephalus. The clinical presentation and radiographic findings of the patient are described and a comprehensive review of the literature was conducted. The adverse effect of communicating hydrocephalus related to nusinersen therapy is being reported and the authors suggest carefully monitoring for features of hydrocephalus developing during the course of nusinersen therapy.


Sign in / Sign up

Export Citation Format

Share Document