scholarly journals Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord

1993 ◽  
Vol 13 (10) ◽  
pp. 4456-4469 ◽  
Author(s):  
SR Soffe
1999 ◽  
Vol 82 (2) ◽  
pp. 1074-1077 ◽  
Author(s):  
Isabelle Delvolvé ◽  
Pascal Branchereau ◽  
Réjean Dubuc ◽  
Jean-Marie Cabelguen

An in vitro brain stem–spinal cord preparation from an adult urodele ( Pleurodeles waltl) was developed in which two fictive rhythmic motor patterns were evoked by bath application of N-methyl-d-aspartate (NMDA; 2.5–10 μM) with d-serine (10 μM). Both motor patterns displayed left-right alternation. The first pattern was characterized by cycle periods ranging between 2.4 and 9.0 s (4.9 ± 1.2 s, mean ± SD) and a rostrocaudal propagation of the activity in consecutive ventral roots. The second pattern displayed longer cycle periods (8.1–28.3 s; 14.2 ± 3.6 s) with a caudorostral propagation. The two patterns were inducible after a spinal transection at the first segment. Preliminary experiments on small pieces of spinal cord further suggested that the ability for rhythm generation is distributed along the spinal cord of this preparation. This study shows that the in vitro brain stem–spinal cord preparation from Pleurodeles waltl may be a useful model to study the mechanisms underlying the different axial motor patterns and the flexibility of the neural networks involved.


1998 ◽  
Vol 79 (5) ◽  
pp. 2316-2328 ◽  
Author(s):  
C. S. Green ◽  
S. R. Soffe

Green, C. S. and S. R. Soffe. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles. J. Neurophysiol. 79: 2316–2328, 1998. We have investigated the effects of ascending inhibitory pathways on two centrally generated rhythmic motor patterns in a simple vertebrate model, the young Xenopus tadpole. Tadpoles swim when touched, but when grasped respond with slower, stronger struggling movements during which the longitudinal pattern of motor activity is reversed. Surgical spinal cord transection to remove all ascending connections originating caudal to the transection (in tadpoles immobilized in α-bungarotoxin) did not affect “fictive” swimming generated more rostrally. In contrast, cycle period and burst duration both significantly increased during fictive struggling. Increases were progressively larger with more rostral transection. Blocking caudal activity with the anesthetic MS222 (pharmacological transection) produced equivalent but reversible effects. Reducing crossed-ascending inhibition selectively, either by midsagittal spinal cord division or rostral cord hemisection (1-sided transection) mimicked the effects of transection. Like transection, both operations increased cycle period and burst duration during struggling but did not affect swimming. The changes during struggling were larger with more rostral hemisection. Reducing crossed-ascending inhibition by spinal hemisection also increased the rostrocaudal longitudinal delay during swimming, and the caudorostral delay during struggling. Weakening inhibition globally with low concentrations of the glycine antagonist strychnine (10–100 nM) did not alter swimming cycle period, burst duration, or longitudinal delay. However, strychnine at 10–60 nM decreased cycle period during struggling. It also increased burst duration in some cases, although burst duration increased as a proportion of cycle period in all cases. Strychnine reduced longitudinal delay during struggling, making rostral and caudal activity more synchronous. At 100 nM, struggling was totally disrupted. By combining our results with a detailed knowledge of tadpole spinal cord anatomy, we conclude that inhibition mediated by the crossed-ascending axons of characterized, glycinergic, commissural interneurons has a major influence on the struggling motor pattern compared with swimming. We suggest that this difference is a consequence of the larger, reversed longitudinal delay and the extended burst duration during struggling compared with swimming.


2003 ◽  
Vol 99 (5) ◽  
pp. 879-885 ◽  
Author(s):  
Song Liu ◽  
Phong Damhieu ◽  
Pauline Devanze ◽  
Gérard Saïd ◽  
Jean Michel Heard ◽  
...  

Object. Peripheral motor axons can regenerate through motor endoneurial tubes of foreign nerves to reinnervate different target muscles. This regenerative capacity has been brought to clinical applications for restorative surgery after nerve or root injury. In this study the authors explore the extent to which nerve cross-anastomosis between lower intercostal nerves and lumbar ventral roots would be effective in inducing reinnervation of paralyzed hindlimb muscles after spinal cord hemisection at the thoracolumbar boundary in rats. Methods. The proximal extremities of sectioned intercostal nerves T10–12 were surgically connected to the distal extremities of sectioned ipsilateral lumbar ventral roots L3–5, respectively. Motor activity reappeared 2 months postsurgery; however, locomotion was not restored and inappropriate motor patterns persisted at 9 months postsurgery. At that time, data from electrophysiological and histological studies and horseradish peroxidase retrograde labeling demonstrated efficient regrowth of thoracic motor neuron axons that reached hindlimb muscles. They also revealed a persistent maturation defect of regrown fibers, as shown by size heterogeneity and presumable extensive axonal branching. These features are consistent with reduced neural activity subsequent to continuing inappropriate motor patterns. Conclusions. These results indicate that cross-anastomosis of intercostal nerves with lumbar ventral roots allows efficient reinnervation of paralyzed hindlimb muscles after spinal cord hemisection in rats. Stimulating the reorganization of the neuronal circuitry in the central nervous system by locomotion training or other methods would presumably result in both functional and anatomical improvements. This experimental setting provides a convenient animal model to investigate these processes.


2014 ◽  
Vol 26 (5) ◽  
pp. 191-195 ◽  
Author(s):  
M Carro-Juárez ◽  
G Rodríguez-Manzo ◽  
M de Lourdes Rodríguez Peña ◽  
M Á Franco

1992 ◽  
Vol 67 (4) ◽  
pp. 996-999 ◽  
Author(s):  
J. J. Greer ◽  
J. C. Smith ◽  
J. L. Feldman

An in vitro brain stem-spinal cord preparation from last trimester (E13-E21) fetal rats, which generates rhythmic respiratory and locomotor patterns, is described. These coordinated motor patterns emerge at stages E17-E18. Synchronous rhythmic motor activity, not clearly characterized as respiratory or locomotor, can occur as early as E13. With this preparation, it is now possible to study the ontogenesis of circuits and cellular mechanisms underlying these critical movements.


2017 ◽  
Vol 312 (1) ◽  
pp. G1-G14 ◽  
Author(s):  
Terence Keith Smith ◽  
Sang Don Koh

We discuss the role of multiple cell types involved in rhythmic motor patterns in the large intestine that include tonic inhibition of the muscle layers interrupted by rhythmic colonic migrating motor complexes (CMMCs) and secretomotor activity. We propose a model that assumes these motor patterns are dependent on myenteric descending 5-hydroxytryptamine (5-HT, serotonin) interneurons. Asynchronous firing in 5-HT neurons excite inhibitory motor neurons (IMNs) to generate tonic inhibition occurring between CMMCs. IMNs release mainly nitric oxide (NO) to inhibit the muscle, intrinsic primary afferent neurons (IPANs), glial cells, and pacemaker myenteric pacemaker interstitial cells of Cajal (ICC-MY). Mucosal release of 5-HT from enterochromaffin (EC) cells excites the mucosal endings of IPANs that synapse with 5-HT descending interneurons and perhaps ascending interneurons, thereby coupling EC cell 5-HT to myenteric 5-HT neurons, synchronizing their activity. Synchronized 5-HT neurons generate a slow excitatory postsynaptic potential in IPANs via 5-HT7 receptors and excite glial cells and ascending excitatory nerve pathways that are normally inhibited by NO. Excited glial cells release prostaglandins to inhibit IMNs (disinhibition) to allow full excitation of ICC-MY and muscle by excitatory motor neurons (EMNs). EMNs release ACh and tachykinins to excite pacemaker ICC-MY and muscle, leading to the simultaneous contraction of both the longitudinal and circular muscle layers. Myenteric 5-HT neurons also project to the submucous plexus to couple motility with secretion, especially during a CMMC. Glial cells are necessary for switching between different colonic motor behaviors. This model emphasizes the importance of myenteric 5-HT neurons and the likely consequence of their coupling and uncoupling to mucosal 5-HT by IPANs during colonic motor behaviors.


2003 ◽  
Vol 89 (3) ◽  
pp. 1187-1195 ◽  
Author(s):  
Jun Ren ◽  
John J. Greer

Patterned spontaneous activity is generated in developing neuronal circuits throughout the CNS including the spinal cord. This activity is thought to be important for activity-dependent neuronal growth, synapse formation, and the establishment of neuronal networks. In this study, we examine the spatiotemporal distribution of motor patterns generated by rat spinal cord and medullary circuits from the time of initial axon outgrowth through to the inception of organized respiratory and locomotor rhythmogenesis during late gestation. This includes an analysis of the neuropharmacological control of spontaneous rhythms generated within the spinal cord at different developmental stages. In vitro spinal cord and medullary-spinal cord preparations isolated from rats at embryonic ages (E)13.5–E21.5 were studied. We found age-dependent changes in the spatiotemporal pattern, neurotransmitter control, and propensity for the generation of spontaneous rhythmic motor discharge during the prenatal period. The developmental profile of the neuropharmacological control of rhythmic bursting can be divided into three periods. At E13.5–E15.5, the spinal networks comprising cholinergic and glycinergic synaptic interconnections are capable of generating rhythmic activity, while GABAergic synapses play a role in supporting the spontaneous activity. At late stages (E18.5–E21.5), glutamate drive acting via non- N-methyl-d-aspartate (non-NMDA) receptors is primarily responsible for the rhythmic activity. During the middle stage (E16.5–E17.5), the spontaneous activity results from the combination of synaptic drive acting via non-NMDA glutamatergic, nicotinic acetylcholine, glycine, and GABAA receptors. The modulatory actions of chloride-mediated conductances shifts from predominantly excitatory to inhibitory late in gestation.


Sign in / Sign up

Export Citation Format

Share Document