Respiratory and locomotor patterns generated in the fetal rat brain stem-spinal cord in vitro

1992 ◽  
Vol 67 (4) ◽  
pp. 996-999 ◽  
Author(s):  
J. J. Greer ◽  
J. C. Smith ◽  
J. L. Feldman

An in vitro brain stem-spinal cord preparation from last trimester (E13-E21) fetal rats, which generates rhythmic respiratory and locomotor patterns, is described. These coordinated motor patterns emerge at stages E17-E18. Synchronous rhythmic motor activity, not clearly characterized as respiratory or locomotor, can occur as early as E13. With this preparation, it is now possible to study the ontogenesis of circuits and cellular mechanisms underlying these critical movements.

1999 ◽  
Vol 82 (2) ◽  
pp. 1074-1077 ◽  
Author(s):  
Isabelle Delvolvé ◽  
Pascal Branchereau ◽  
Réjean Dubuc ◽  
Jean-Marie Cabelguen

An in vitro brain stem–spinal cord preparation from an adult urodele ( Pleurodeles waltl) was developed in which two fictive rhythmic motor patterns were evoked by bath application of N-methyl-d-aspartate (NMDA; 2.5–10 μM) with d-serine (10 μM). Both motor patterns displayed left-right alternation. The first pattern was characterized by cycle periods ranging between 2.4 and 9.0 s (4.9 ± 1.2 s, mean ± SD) and a rostrocaudal propagation of the activity in consecutive ventral roots. The second pattern displayed longer cycle periods (8.1–28.3 s; 14.2 ± 3.6 s) with a caudorostral propagation. The two patterns were inducible after a spinal transection at the first segment. Preliminary experiments on small pieces of spinal cord further suggested that the ability for rhythm generation is distributed along the spinal cord of this preparation. This study shows that the in vitro brain stem–spinal cord preparation from Pleurodeles waltl may be a useful model to study the mechanisms underlying the different axial motor patterns and the flexibility of the neural networks involved.


1996 ◽  
Vol 271 (5) ◽  
pp. R1160-R1164 ◽  
Author(s):  
J. J. Greer ◽  
Z. al-Zubaidy ◽  
J. E. Carter

In the present study, we test whether thyrotropin-releasing hormone (TRH) stimulates respiratory frequency in perinatal rats by acting at regions of the medulla responsible for respiratory rhythmogenesis, the pre-Botzinger complex. We also test whether TRH stimulates respiration in the fetal rat at a time shortly after the inception of respiratory rhythmogenesis [embryonic days (E) 17-18]. Two in vitro experimental models were utilized: the isolated brain stem-spinal cord preparation from fetal (E17-E18) and neonatal [postnatal days (P) 0-2] rats and the medullary slice preparation isolated from neonatal rats (P1-P2). Bath application of TRH caused a dose-dependent, reversible increase (maximum increase approximately 60%) in the frequency of respiratory rhythmic neural discharge generated by brain stem-spinal cord [half-maximal effective concentration (EC50) approximately 9 nM] and medullary slice (EC50 approximately 2.5 nM) neonatal rat preparations. Pressure injection of TRH unilaterally into the region of the pre-Botzinger complex of the neonatal medullary slice caused an approximately 28% increase in the frequency of respiratory discharge. Application of TRH to the medium bathing fetal rat brain stem-spinal cord preparations caused an approximately threefold increase in respiratory discharge frequency. We conclude that TRH stimulates respiratory discharge frequency from the time near inception of respiratory motor discharge and acts directly at the pre-Botzinger complex.


2003 ◽  
Vol 89 (3) ◽  
pp. 1187-1195 ◽  
Author(s):  
Jun Ren ◽  
John J. Greer

Patterned spontaneous activity is generated in developing neuronal circuits throughout the CNS including the spinal cord. This activity is thought to be important for activity-dependent neuronal growth, synapse formation, and the establishment of neuronal networks. In this study, we examine the spatiotemporal distribution of motor patterns generated by rat spinal cord and medullary circuits from the time of initial axon outgrowth through to the inception of organized respiratory and locomotor rhythmogenesis during late gestation. This includes an analysis of the neuropharmacological control of spontaneous rhythms generated within the spinal cord at different developmental stages. In vitro spinal cord and medullary-spinal cord preparations isolated from rats at embryonic ages (E)13.5–E21.5 were studied. We found age-dependent changes in the spatiotemporal pattern, neurotransmitter control, and propensity for the generation of spontaneous rhythmic motor discharge during the prenatal period. The developmental profile of the neuropharmacological control of rhythmic bursting can be divided into three periods. At E13.5–E15.5, the spinal networks comprising cholinergic and glycinergic synaptic interconnections are capable of generating rhythmic activity, while GABAergic synapses play a role in supporting the spontaneous activity. At late stages (E18.5–E21.5), glutamate drive acting via non- N-methyl-d-aspartate (non-NMDA) receptors is primarily responsible for the rhythmic activity. During the middle stage (E16.5–E17.5), the spontaneous activity results from the combination of synaptic drive acting via non-NMDA glutamatergic, nicotinic acetylcholine, glycine, and GABAA receptors. The modulatory actions of chloride-mediated conductances shifts from predominantly excitatory to inhibitory late in gestation.


2011 ◽  
Vol 105 (6) ◽  
pp. 2818-2829 ◽  
Author(s):  
Eugene Zaporozhets ◽  
Kristine C. Cowley ◽  
Brian J. Schmidt

Previous studies of the in vitro neonatal rat brain stem-spinal cord showed that propriospinal relays contribute to descending transmission of a supraspinal command signal that is capable of activating locomotion. Using the same preparation, the present series examines whether enhanced excitation of thoracic propriospinal neurons facilitates propagation of the locomotor command signal in the lesioned spinal cord. First, we identified neurotransmitters contributing to normal endogenous propriospinal transmission of the locomotor command signal by testing the effect of receptor antagonists applied to cervicothoracic segments during brain stem-induced locomotor-like activity. Spinal cords were either intact or contained staggered bilateral hemisections located at right T1/T2 and left T10/T11 junctions designed to abolish direct long-projecting bulbospinal axons. Serotonergic, noradrenergic, dopaminergic, and glutamatergic, but not cholinergic, receptor antagonists blocked locomotor-like activity. Approximately 73% of preparations with staggered bilateral hemisections failed to generate locomotor-like activity in response to electrical stimulation of the brain stem alone; such preparations were used to test the effect of neuroactive substances applied to thoracic segments (bath barriers placed at T3 and T9) during brain stem stimulation. The percentage of preparations developing locomotor-like activity was as follows: 5-HT (43%), 5-HT/ N-methyl-d-aspartate (NMDA; 33%), quipazine (42%), 8-hydroxy-2-(di- n-propylamino)tetralin (20%), methoxamine (45%), and elevated bath K+ concentration (29%). Combined norepinephrine and dopamine increased the success rate (67%) compared with the use of either agent alone (4 and 7%, respectively). NMDA, Mg2+ ion removal, clonidine, and acetylcholine were ineffective. The results provide proof of principle that artificial excitation of thoracic propriospinal neurons can improve supraspinal control over hindlimb locomotor networks in the lesioned spinal cord.


1998 ◽  
Vol 79 (5) ◽  
pp. 2316-2328 ◽  
Author(s):  
C. S. Green ◽  
S. R. Soffe

Green, C. S. and S. R. Soffe. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles. J. Neurophysiol. 79: 2316–2328, 1998. We have investigated the effects of ascending inhibitory pathways on two centrally generated rhythmic motor patterns in a simple vertebrate model, the young Xenopus tadpole. Tadpoles swim when touched, but when grasped respond with slower, stronger struggling movements during which the longitudinal pattern of motor activity is reversed. Surgical spinal cord transection to remove all ascending connections originating caudal to the transection (in tadpoles immobilized in α-bungarotoxin) did not affect “fictive” swimming generated more rostrally. In contrast, cycle period and burst duration both significantly increased during fictive struggling. Increases were progressively larger with more rostral transection. Blocking caudal activity with the anesthetic MS222 (pharmacological transection) produced equivalent but reversible effects. Reducing crossed-ascending inhibition selectively, either by midsagittal spinal cord division or rostral cord hemisection (1-sided transection) mimicked the effects of transection. Like transection, both operations increased cycle period and burst duration during struggling but did not affect swimming. The changes during struggling were larger with more rostral hemisection. Reducing crossed-ascending inhibition by spinal hemisection also increased the rostrocaudal longitudinal delay during swimming, and the caudorostral delay during struggling. Weakening inhibition globally with low concentrations of the glycine antagonist strychnine (10–100 nM) did not alter swimming cycle period, burst duration, or longitudinal delay. However, strychnine at 10–60 nM decreased cycle period during struggling. It also increased burst duration in some cases, although burst duration increased as a proportion of cycle period in all cases. Strychnine reduced longitudinal delay during struggling, making rostral and caudal activity more synchronous. At 100 nM, struggling was totally disrupted. By combining our results with a detailed knowledge of tadpole spinal cord anatomy, we conclude that inhibition mediated by the crossed-ascending axons of characterized, glycinergic, commissural interneurons has a major influence on the struggling motor pattern compared with swimming. We suggest that this difference is a consequence of the larger, reversed longitudinal delay and the extended burst duration during struggling compared with swimming.


1999 ◽  
Vol 87 (3) ◽  
pp. 1066-1074 ◽  
Author(s):  
Chun-Kuei Su

To understand the origination of sympathetic nerve discharge (SND), I developed an in vitro brain stem-spinal cord preparation from neonatal rats. Ascorbic acid (3 mM) was added into the bath solution to increase the viability of preparations. At 24°C, rhythmic SND (recorded from the splanchnic nerve) was consistently observed, but it became quiescent at <16°C. Respiratory-related SND (rSND) was discernible and was well correlated with C4 root activity. Power spectral analysis of SND revealed a dominant 2-Hz oscillation. In most preparations (86%), such oscillation was persistent, whereas it only slightly reduced its magnitude after isolation from the brain stem. The removal of neural structures rostral to the superior cerebellar artery (equivalent to the level of facial nuclei) reduced rSND, increased tonic SND, but did not affect the temporal coupling between SND and C4 root activity. Our data suggest a prominent contribution of SND from the neural mechanisms confined within the neonatal rat spinal cord. This ascorbic acid-enhanced in vitro preparation is a very useful model to study neural mechanisms underlying sympathorespiratory integration.


1984 ◽  
Vol 100 (2) ◽  
pp. 155-160 ◽  
Author(s):  
R. D. G. Milner ◽  
A. Cser ◽  
G. H. Cope

ABSTRACT Pancreatic rudiments from 14-day fetal rats were cultured whole for 8 days in medium containing 5·5 or 16·5 mmol glucose/l (1G or 3G medium). Rudiments grown in 3G medium (3G cells) contained more DNA and insulin than those grown in 1G medium (1G cells) but there was no alteration in the insulin/DNA ratio or the fractional area of the rudiment occupied by insulin-containing cells. Morphometric analysis of ultrastructure revealed that the β cells grown in 3G medium were smaller and had smaller nuclei than those grown in 1G medium. The size of exocrine cell nuclei in 1G or 3G medium was similar. Insulin granules occupied a greater proportion of the cytoplasmic volume in rudiments grown in 3G medium although the mean absolute volume of insulin granules per cell grown in 1G and 3G media was similar. Hence the residual cytoplasmic volume (cell—nucleus and granules) of 3G cells was less than that of 1G cells. Insulin granules from 3G cells had smaller granule sacs and cores than those from 1G cells. It is concluded that glucose stimulates the growth of rat fetal pancreas in vitro and has important effects on β cell ultrastructure. J. Endocr. (1984) 100, 155–160


1994 ◽  
Vol 266 (3) ◽  
pp. R658-R667 ◽  
Author(s):  
K. Sugaya ◽  
W. C. De Groat

An in vitro neonatal (1-7 day) rat brain stem-spinal cord-bladder (BSB) preparation was used to examine the central control of micturition. Isovolumetric bladder contractions occurred spontaneously or were induced by electrical stimulation of the ventrolateral brain stem, spinal cord, bladder wall (ES-BW), or by perineal tactile stimulation (PS). Transection of the spinal cord at the L1 segment increased the amplitude of ES-BW- and PS-evoked contractions, and subsequent removal of the spinal cord further increased spontaneous and ES-BW-evoked contractions but abolished PS-evoked contractions. Hexamethonium (1 mM), a ganglionic blocking agent, mimicked the effect of cord extirpation. Tetrodotoxin (1 microM) blocked ES-BW- and PS-evoked contractions but enhanced spontaneous contractions. Bicuculline methiodide (10-50 microM), a gamma-aminobutyric acid A receptor antagonist, increased the amplitude of spontaneous, ES-BW- and PS-evoked contractions. These results indicate that PS-evoked contractions are mediated by spinal reflex pathways, whereas spontaneous and ES-BW-evoked contractions that are elicited by peripheral mechanisms are subject to a tonic inhibition dependent on an efferent outflow from the spinal cord. PS-evoked micturition is also subject to inhibitory modulation arising from sites rostral to the lumbosacral spinal cord. Although electrical stimulation of bulbospinal excitatory pathways can initiate bladder contractions in the neonatal rat, these pathways do not appear to have an important role in controlling micturition during the first postnatal week.


1998 ◽  
Vol 79 (5) ◽  
pp. 2643-2652 ◽  
Author(s):  
E. Bracci ◽  
M. Beato ◽  
A. Nistri

Bracci, E., M. Beato, and A. Nistri. Extracellular K+ induces locomotor-like patterns in the rat spinal cord in vitro: comparison with NMDA or 5-HT induced activity. J. Neurophysiol. 79: 2643–2652, 1998. Bath-application of increasing concentrations of extracellular K+ elicited alternating motor patterns recorded from pairs of various lumbar ventral roots of the neonatal rat (0–2 days old) spinal cord in vitro. The threshold concentration of K+ for this effect was 7.9 ± 0.8 mM (mean ± SD). The suprathreshold concentration range useful to evoke persistent motor patterns (lasting ≥10 min) was very narrow (∼1 mM) as further increments elicited only rhythmic activity lasting from 20 s to a few minutes. On average, the fastest period of rhythmic patterns was 1.1 ± 0.3 s. Intracellular recording from lumbar motoneurons showed that raised extracellular K+ elicited membrane potential oscillations with superimposed repetitive firing. In the presence of N-methyl-d-aspartate (NMDA) or non-NMDA receptor blockers [ R(−)-2-amino-phosphonovaleric acid or 6-cyano-7-nitroquinoxaline-2,3-dione, respectively] extracellular K+ increases could still induce motor patterns although the threshold concentration was raised. Serotonin (5-HT) also induced alternating motor patterns (threshold 15 ± 7 μM) that were consistently slower than those induced by high K+ or NMDA. Ritanserin (1 μM) prevented the locomotor-like activity of 5-HT but not that of high K+ provided the concentration of the latter was further increased. Subthreshold concentrations of K+ became effective in the presence of subthreshold doses of 5-HT or NMDA, indicating mutual facilitation between these substances. The fastest pattern frequency was observed by raising K+ or by adding NMDA. In the presence of 5-HT, the pattern frequency was never as fast even if NMDA (or high K+) was coapplied. Furthermore, application of 5-HT significantly slowed down the K+- or NMDA-induced rhythm, an effect strongly potentiated in the presence of ritanserin. It is suggested that the operation of the spinal locomotor network was activated by rises in extracellular K+, which presumably led to a broad increase in neuronal excitability. Whenever the efficiency of excitatory synaptic transmission was diminished (for example by glutamate receptor antagonism), a larger concentration of K+ was required to evoke locomotor-like patterns. The complex effect (comprising stimulation and inhibition) of 5-HT on alternating pattern generation appeared to result from a dual action of this substance on the spinal locomotor network.


1993 ◽  
Vol 70 (6) ◽  
pp. 2241-2250 ◽  
Author(s):  
M. K. Floeter ◽  
A. Lev-Tov

1. The excitation of lumbar motoneurons by reticulospinal axons traveling in the medial longitudinal fasciculus (MLF) was investigated in the newborn rat using intracellular recordings from lumbar motoneurons in an in vitro preparation of the brain stem and spinal cord. The tracer DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine) was introduced into the MLF of 6-day-old littermate rats that had been fixed with paraformaldehyde to evaluate the anatomic extent of this developing pathway. 2. Fibers labeled from the MLF by DiI were present in the cervical ventral and lateral white matter and a smaller number of labeled fibers extended to the lumbar enlargement. Patches of sparse terminal labeling were seen in the lumbar ventral gray. 3. In the in vitro preparation of the brain stem and spinal cord, MLF stimulation excited motoneurons through long-latency pathways in most motoneurons and through both short-(< 40 ms) and long-latency connections in 16 of 40 motoneurons studied. Short- and longer-latency components of the excitatory response were evaluated using mephenesin to reduce activity in polysynaptic pathways. 4. Paired-pulse stimulation of the MLF revealed a modest temporal facilitation of the short-latency excitatory postsynaptic potential (EPSP) at short interstimulus intervals (20–200 ms). Trains of stimulation at longer interstimulus intervals (1–30 s) resulted in a depression of EPSP amplitude. The time course of the synaptic depression was compared with that found in EPSPs resulting from paired-pulse stimulation of the dorsal root and found to be comparable. 5. The short-latency MLF EPSP was reversibly blocked by 6-cyano-7-nitroquinoxaline (CNQX), an antagonist of non-N-methyl-D-aspartate glutamate receptors, with a small CNQX-resistant component. Longer-latency components of the MLF EPSP were also blocked by CNQX, and some late components of the PSP were sensitive to strychnine. MLF activation of multiple polysynaptic pathways in the spinal cord is discussed.


Sign in / Sign up

Export Citation Format

Share Document