scholarly journals Single-channel properties of four calcium channel types in rat motoneurons

1995 ◽  
Vol 15 (3) ◽  
pp. 2218-2224 ◽  
Author(s):  
M Umemiya ◽  
AJ Berger
2008 ◽  
Vol 100 (4) ◽  
pp. 2115-2124 ◽  
Author(s):  
Adrian Rodriguez-Contreras ◽  
Ping Lv ◽  
Jun Zhu ◽  
Hyo Jeong Kim ◽  
Ebenezer N. Yamoah

To minimize the effects of Ca2+ buffering and signaling, this study sought to examine single Ca2+ channel properties using Sr2+ ions, which substitute well for Ca2+ but bind weakly to intracellular Ca2+ buffers. Two single-channel fluctuations were distinguished by their sensitivity to dihydropyridine agonist (L-type) and insensitivity toward dihydropyridine antagonist (non-L-type). The L- and non-L-type single channels were observed with single-channel conductances of 16 and 19 pS at 70 mM Sr2+ and 11 and 13 pS at 5 mM Sr2+, respectively. We obtained KD estimates of 5.2 and 1.9 mM for Sr2+ for L- and non-L-type channels, respectively. At Ca2+ concentration of ∼2 mM, the single-channel conductances of Sr2+ for the L-type channel was ∼1.5 and 4.0 pS for the non-L-type channels. Thus the limits of single-channel microdomain at the membrane potential of a hair cell (e.g., −65 mV) for Sr2+ ranges from 800 to 2,000 ion/ms, assuming an ECa of 100 mV. The channels are ≥4-fold more sensitive at the physiological concentration ranges than at concentrations >10 mM. Additionally, the channels have the propensity to dwell in the closed state at high concentrations of Sr2+, which is reflected in the time constant of the first latency distributions. It is concluded that the concentration of the permeant ion modulates the gating of hair cell Ca2+ channels. Finally, the closed state/s that is/are altered by high concentrations of Sr2+ may represent divalent ion-dependent inactivation of the L-type channel.


1991 ◽  
Vol 66 (4) ◽  
pp. 1166-1175 ◽  
Author(s):  
D. O. Smith ◽  
C. Franke ◽  
J. L. Rosenheimer ◽  
F. Zufall ◽  
H. Hatt

1. Single-channel properties of desensitizing glutamate-activated channels were analyzed in outside-out patch-clamp recordings from a motoneuron-enriched cell fraction from embryonic chick. A piezo-driven device was used to achieve fast solution exchange at the electrode tip, resulting in maximum activation within 2 ms. 2. Quisqualate/AMPA receptors, with a 13-pS conductance, desensitized rapidly; the desensitization rate depended on agonist concentration but not on membrane potential. When quisqualate was applied slowly, the quisqualate-activated channels desensitized without prior channel opening, indicating desensitization from the closed state. After a 10-ms refractory period, resensitization of all channels required up to 300 ms; resensitization rate did not depend on the duration of the preceding quisqualate application. 3. At agonist concentrations less than or equal to 1 mM, kainate receptors, with a 20-pS conductance, did not desensitize. At kainate concentrations greater than or equal to 1 mM, though, kainate receptors desensitized to a low steady-state conductance within approximately 200 ms. Resensitization of all channels required as long as 3 s, which could render kainate receptors inexcitable during high-frequency activation. 4. Desensitization rates of whole-cell currents were similar to those observed in outside-out mode. Glutamate- and quisqualate-activated responses were similar, suggesting that the rapidly desensitizing quisqualate-sensitive receptor type may dominate the kinetics of whole-cell excitatory postsynaptic currents (EPSCs) in this preparation. 5. It may be concluded that the efficacy of glutamate-mediated synaptic transmission is modulated by differences in the rates of desensitization and resensitization.


1986 ◽  
Vol 87 (6) ◽  
pp. 933-953 ◽  
Author(s):  
R Coronado ◽  
H Affolter

Functional calcium channels present in purified skeletal muscle transverse tubules were inserted into planar phospholipid bilayers composed of the neutral lipid phosphatidylethanolamine (PE), the negatively charged lipid phosphatidylserine (PS), and mixtures of both. The lengthening of the mean open time and stabilization of single channel fluctuations under constant holding potentials was accomplished by the use of the agonist Bay K8644. It was found that the barium current carried through the channel saturates as a function of the BaCl2 concentration at a maximum current of 0.6 pA (at a holding potential of 0 mV) and a half-saturation value of 40 mM. Under saturation, the slope conductance of the channel is 20 pS at voltages more negative than -50 mV and 13 pS at a holding potential of 0 mV. At barium concentrations above and below the half-saturation point, the open channel currents were independent of the bilayer mole fraction of PS from XPS = 0 (pure PE) to XPS = 1.0 (pure PS). It is shown that in the absence of barium, the calcium channel transports sodium or potassium ions (P Na/PK = 1.4) at saturating rates higher than those for barium alone. The sodium conductance in pure PE bilayers saturates as a function of NaCl concentration, following a curve that can be described as a rectangular hyperbola with a half-saturation value of 200 mM and a maximum conductance of 68 pS (slope conductance at a holding potential of 0 mV). In pure PS bilayers, the sodium conductance is about twice that measured in PE at concentrations below 100 mM NaCl. The maximum channel conductance at high ionic strength is unaffected by the lipid charge. This effect at low ionic strength was analyzed according to J. Bell and C. Miller (1984. Biophysical Journal. 45:279-287) and interpreted as if the conduction pathway of the calcium channel were separated from the bilayer lipid by approximately 20 A. This distance thereby effectively insulates the ion entry to the channel from the bulk of the bilayer lipid surface charge. Current vs. voltage curves measured in NaCl in pure PE and pure PS show that similarly small surface charge effects are present in both inward and outward currents. This suggests that the same conduction insulation is present at both ends of the calcium channel.


1996 ◽  
Vol 270 (2) ◽  
pp. G287-G290 ◽  
Author(s):  
A. W. Mangel ◽  
L. Scott ◽  
R. A. Liddle

To examine the role of calcium channels in depolarization-activated cholecystokinin (CCK) release, studies were performed in an intestinal CCK-secreting cell line, STC-1. Blockade of potassium channels with barium chloride (5 mM) increased the release of CCK by 374.6 +/- 46.6% of control levels. Barium-induced secretion was inhibited by the L-type calcium-channel blocker, nicardipine. Nicardipine (10(-9)-10(-5) M) produced a dose-dependent inhibition in barium-stimulated secretion with a half-maximal inhibition (IC50) value of 0.1 microM. A second L-type calcium-channel blocker, diltiazem (10(-9)-10(-4) M), also inhibited barium-induced CCK secretion with an IC50 value of 5.1 microM. By contrast, the T-type calcium-channel blocker, nickel chloride (10(-7)-10(-8) M), failed to significantly inhibit barium-induced CCK secretion. To further evaluate a role for L-type calcium channels in the secretion of CCK, the effects of the L-type calcium channel opener, BAY K 8644, were examined. BAY K 8644 (10(-8)-10(-4) M) produced a dose-dependent stimulation in CCK release with a mean effective concentration value of 0.2 microM. Recordings of single-channel currents from inside-out membrane patches showed activation of calcium channels by BAY K 8644 (1 microM), with a primary channel conductance of 26.0 +/- 1.2 pS. It is concluded that inhibition of potassium channel activity depolarizes the plasma membrane, thereby activating L-type, but not T-type, calcium channels. The corresponding influx of calcium serves to trigger secretion of CCK.


2021 ◽  
Author(s):  
Di Wu

Ion-channel functions are often studied by the current-voltage relation, which is commonly fitted by the Boltzmann equation, a powerful model widely used nowadays. However, the Boltzmann model is restricted to a two-state ion-permeation process. Here we present an improved model that comprises a flexible number of states and incorporates both the single-channel conductance and the open-channel probability. Employing the channel properties derived from the single-channel recording experiments, the proposed model is able to describe various current-voltage relations, especially the reversal ion-permeation curves showing the inward- and outward-rectifications. We demonstrate the applicability of the proposed model using the published patch-clamp data of BK and MthK potassium channels, and discuss the similarity of the two channels based on the model studies.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Niels Voigt ◽  
Ange Maguy ◽  
Yung-Hsin Yeh ◽  
Xiao-Yan Qi ◽  
Ursula Ravens ◽  
...  

Background: Although atrial tachycardia (AT) appears to promote agonist-independent constitutively active I K,ACh that increases susceptibility to AF, direct demonstration of dysregulated I K,ACh channel function is lacking. We studied AT effects on single I K,ACh channel activity in dog atria. Methods: I K,ACh channel activity was recorded with cell-attached patch clamp in isolated atrial myocytes of control (CTL) and AT (7 days, 400 min −1 ) dogs. Results : AT prolonged inducible AF duration from 44±22 to 413±167 s; N=9 dogs/gp, P<0.001. In the absence of cholinergic stimulation, single-channel openings with typical I K,ACh conductance and rectification were observed in CTL and AT (Figure ). AT produced prominent agonist-independent I K,ACh activity due to 7-fold increased opening frequency (f o ) and 10-fold increased open probability (P o ) vs CTL (P<0.01 for each), but unaltered open time and single channel conductance. With maximum I K,ACh activation (10 μm carbachol, CCh), f o was 38% lower, open time constant 25% higher, and P o and unitary conductance unchanged for AT vs CTL. The selective Kir3 blocker tertiapin (100 nM) reduced f o and P o by 48% and 51% (P<0.05 each) without altering other channel properties, confirming the identity of I K,ACh. Conclusions : AT produces prominent agonist-independent constitutive single-channel I K,ACh activity, providing a molecular basis for previously-observed AT-enhanced macroscopic I K,ACh , as well as associated AP-shortening and tertiapin-suppressible AF promotion. These results suggest an important role for constitutively active I K,ACh channels in AT-remodeling and support their interest as a potential novel AF-therapy target.


1993 ◽  
Vol 177 (1) ◽  
pp. 201-221 ◽  
Author(s):  
H. A. Pearson ◽  
G. Lees ◽  
D. Wray

1. Using the patch-clamp technique, Ca2+ channel currents were recorded from neurones freshly isolated from the thoracic ganglia of the desert locust Schistocerca gregaria. 2. In solutions containing 10 mmol l-1 Ba2+ we observed high-voltage-activated whole-cell inward currents with sustained and transient components, both of which had similar steady-state inactivation properties. 3. Substitution of Ca2+ for Ba2+ was found to reduce whole-cell currents, whereas removal of monovalent cations had no effect. 4. Cd2+ (1 mmol l-1) completely blocked the whole-cell current, but at 10 micromolar preferentially inhibited the sustained component without affecting the transient component. 5. Verapamil (1 micromolar) inhibited both current components but appeared to be more selective for the sustained component, whereas nitrendipine (1 micromolar) had no effect on either component. 6. A single-channel recording suggested that the transient component was carried by a low- conductance channel. 7. Certain compounds with insecticidal action (ryanodine, S-bioallethrin, deltamethrin and avermectin) did not affect calcium channel currents in these cells. 8. These data suggest that there are two types of Ca2+ channels present in locust neurones. These channel types have properties differing from the T-, L- and N-type channels found in vertebrates and, furthermore, were not targets for the insecticides we tested.


Sign in / Sign up

Export Citation Format

Share Document