scholarly journals Dissociation between Light-Induced Phase Shift of the Circadian Rhythm and Clock Gene Expression in Mice Lacking the Pituitary Adenylate Cyclase Activating Polypeptide Type 1 Receptor

2001 ◽  
Vol 21 (13) ◽  
pp. 4883-4890 ◽  
Author(s):  
Jens Hannibal ◽  
Francoise Jamen ◽  
Harriette S. Nielsen ◽  
Laurant Journot ◽  
Philippe Brabet ◽  
...  
Cephalalgia ◽  
2017 ◽  
Vol 38 (3) ◽  
pp. 496-502 ◽  
Author(s):  
Carmen Fourier ◽  
Caroline Ran ◽  
Margret Zinnegger ◽  
Anne-Sofie Johansson ◽  
Christina Sjöstrand ◽  
...  

Background Cluster headache is characterized by recurrent unilateral headache attacks of severe intensity. One of the main features in a majority of patients is a striking rhythmicity of attacks. The CLOCK ( Circadian Locomotor Output Cycles Kaput) gene encodes a transcription factor that serves as a basic driving force for circadian rhythm in humans and is therefore particularly interesting as a candidate gene for cluster headache. Methods We performed an association study on a large Swedish cluster headache case-control sample (449 patients and 677 controls) screening for three single nucleotide polymorphisms (SNPs) in the CLOCK gene implicated in diurnal preference (rs1801260) or sleep duration (rs11932595 and rs12649507), respectively. We further wanted to investigate the effect of identified associated SNPs on CLOCK gene expression. Results We found a significant association with rs12649507 and cluster headache ( p = 0.0069) and this data was strengthened when stratifying for reported diurnal rhythmicity of attacks ( p = 0.0009). We investigated the effect of rs12649507 on CLOCK gene expression in human primary fibroblast cultures and identified a significant increase in CLOCK mRNA expression ( p = 0.0232). Conclusions Our results strengthen the hypothesis of the involvement of circadian rhythm in cluster headache.


2006 ◽  
Vol 20 (8) ◽  
pp. 1715-1727 ◽  
Author(s):  
Laurence Canaple ◽  
Juliette Rambaud ◽  
Ouria Dkhissi-Benyahya ◽  
Béatrice Rayet ◽  
Nguan Soon Tan ◽  
...  

Abstract Recent evidence has emerged that peroxisome proliferator-activated receptor α (PPARα), which is largely involved in lipid metabolism, can play an important role in connecting circadian biology and metabolism. In the present study, we investigated the mechanisms by which PPARα influences the pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the peripheral oscillator of the liver. We demonstrate that PPARα plays a specific role in the peripheral circadian control because it is required to maintain the circadian rhythm of the master clock gene brain and muscle Arnt-like protein 1 (bmal1) in vivo. This regulation occurs via a direct binding of PPARα on a potential PPARα response element located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARα gene expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene expression in cell culture and up-regulates hepatic bmal1 in vivo. Together, these results provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARα in peripheral clocks.


2013 ◽  
Vol 45 (09) ◽  
pp. 629-639 ◽  
Author(s):  
K. Hofmann ◽  
U. Schönerstedt ◽  
E. Mühlbauer ◽  
D. Wedekind ◽  
E. Peschke

2020 ◽  
Vol 21 (7) ◽  
pp. 2294
Author(s):  
Olga Blaževitš ◽  
Nityanand Bolshette ◽  
Donatella Vecchio ◽  
Ana Guijarro ◽  
Ottavio Croci ◽  
...  

The circadian transcriptional network is based on a competition between transcriptional activator and repressor complexes regulating the rhythmic expression of clock-controlled genes. We show here that the MYC-associated factor X, MAX, plays a repressive role in this network and operates through a MYC-independent binding to E-box-containing regulatory regions within the promoters of circadian BMAL1 targets. We further show that this “clock” function of MAX is required for maintaining a proper circadian rhythm and that MAX and BMAL1 contribute to two temporally alternating transcriptional complexes on clock-regulated promoters. We also identified MAX network transcriptional repressor, MNT, as a fundamental partner of MAX-mediated circadian regulation. Collectively, our data indicate that MAX regulates clock gene expression and contributes to keeping the balance between positive and negative elements of the molecular clock machinery.


2005 ◽  
Vol 1050 (1-2) ◽  
pp. 101-109 ◽  
Author(s):  
Dao-Qi Zhang ◽  
Tongrong Zhou ◽  
Guo-Xiang Ruan ◽  
Douglas G. McMahon

2004 ◽  
Vol 120 (2) ◽  
pp. 164-172 ◽  
Author(s):  
V Simonneaux ◽  
V.-J Poirel ◽  
M.-L Garidou ◽  
D Nguyen ◽  
E Diaz-Rodriguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document