scholarly journals Activation of Group I Metabotropic Glutamate Receptors Produces a Direct Excitation and Disinhibition of GABAergic Projection Neurons in the Substantia Nigra Pars Reticulata

2001 ◽  
Vol 21 (18) ◽  
pp. 7001-7012 ◽  
Author(s):  
Michael J. Marino ◽  
Marion Wittmann ◽  
Stefania Risso Bradley ◽  
George W. Hubert ◽  
Yoland Smith ◽  
...  
1999 ◽  
Vol 82 (4) ◽  
pp. 1974-1981 ◽  
Author(s):  
Ezia Guatteo ◽  
Nicola B. Mercuri ◽  
Giorgio Bernardi ◽  
Thomas Knöpfel

Metabotropic glutamate receptors modulate neuronal excitability via a multitude of mechanisms, and they have been implicated in the pathogenesis of neurodegenerative processes. Here we investigated the responses mediated by group I metabotropic glutamate receptors (mGluRs) in dopamine neurons of the rat substantia nigra pars compacta, using whole cell patch-clamp recordings in combination with microfluorometric measurements of [Ca2+]i and [Na+]i. The selective group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (3,5-DHPG) was bath-applied (20 μM, 30 s to 2 min) or applied locally by means of short-lasting (2–4 s) pressure pulses, delivered through an agonist-containing pipette positioned close to the cell body of the neuron. 3,5-DHPG evoked an inward current characterized by a transient and a sustained component, the latter of which was uncovered only with long-lasting agonist applications. The fast component coincided with a transient elevation of [Ca2+]i, whereas the total current was associated with a rise in [Na+]i. These responses were not affected either by the superfusion of ionotropic excitatory amino acid antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and d-2-amino-5-phosphono-pentanoic acid (d-APV), nor by the sodium channel blocker tetrodotoxin (TTX). (S)-α-methyl-4-carboxyphenylglycine (S-MCPG) and the more selective mGluR1 antagonist 7(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate (CPCCOEt) depressed both 3,5-DHPG–induced inward current components and, although less effectively, the associated [Ca2+]i elevations. On repeated agonist applications the inward current and the calcium transients both desensitized. The time constant of recovery from desensitization differed significantly between these two responses, being 67.4 ± 4.4 s for the inward current and 28.6 ± 2.7 s for the calcium response. Bathing the tissue in a calcium-free/EGTA medium or adding thapsigargin (1 μM) to the extracellular medium prevented the generation of the [Ca2+]i transient, but did not prevent the activation of the inward current. These electrophysiological and fluorometric results show that the 3,5-DHPG–induced inward current and the [Ca2+]i elevations are mediated by independent pathways downstream the activation of mGluR1.


2001 ◽  
Vol 85 (5) ◽  
pp. 1960-1968 ◽  
Author(s):  
Marion Wittmann ◽  
Michael J. Marino ◽  
Stefania Risso Bradley ◽  
P. Jeffrey Conn

The GABAergic projection neurons of the substantia nigra pars reticulata (SNr) exert an important influence on the initiation and control of movement. The SNr is a primary output nucleus of the basal ganglia (BG) and is controlled by excitatory inputs from the subthalamic nucleus (STN) and inhibitory inputs from the striatum and globus pallidus. Changes in the output of the SNr are believed to be critically involved in the development of a variety of movement disorders. Anatomical studies reveal that metabotropic glutamate receptors (mGluRs) are highly expressed throughout the BG. Interestingly, mRNA for group III mGluRs are highly expressed in STN, striatum, and globus pallidus, and immunocytochemical studies have shown that the group III mGluR proteins are present in the SNr. Thus it is possible that group III mGluRs play a role in the modulation of synaptic transmission in this nucleus. We performed whole cell patch-clamp recordings from nondopaminergic SNr neurons to investigate the effect of group III mGluR activation on excitatory and inhibitory transmission in the SNr. We report that activation of group III mGluRs by the selective agonist l(+)-2-amino-4-phosphonobutyric acid (l-AP4, 100 μM) decreases inhibitory synaptic transmission in the SNr. Miniature inhibitory postsynaptic currents studies and paired-pulse studies reveal that this effect is mediated by a presynaptic mechanism. Furthermore we found that l-AP4 (500 μM) also reduces excitatory synaptic transmission at the STN-SNr synapse by action on presynaptically localized group III mGluRs. The finding that mGluRs modulate the major inputs to SNr neurons suggests that these receptors may play an important role in motor function and could provide new targets for the development of pharmacological treatments of movement disorders.


2000 ◽  
Vol 20 (9) ◽  
pp. 3085-3094 ◽  
Author(s):  
Stefania Risso Bradley ◽  
Michael J. Marino ◽  
Marion Wittmann ◽  
Susan T. Rouse ◽  
Hazar Awad ◽  
...  

2007 ◽  
Vol 97 (4) ◽  
pp. 3136-3141 ◽  
Author(s):  
Thomas Heinbockel ◽  
Kathryn A. Hamilton ◽  
Matthew Ennis

In the main olfactory bulb, several populations of granule cells (GCs) can be distinguished based on the soma location either superficially, interspersed with mitral cells within the mitral cell layer (MCL), or deeper, within the GC layer (GCL). Little is known about the physiological properties of superficial GCs (sGCs) versus deep GCs (dGCs). Here, we used patch-clamp recording methods to explore the role of Group I metabotropic glutamate receptors (mGluRs) in regulating the activity of GCs in slices from wildtype and mGluR−/− mutant mice. In wildtype mice, bath application of the selective Group I mGluR agonist DHPG depolarized and increased the firing rate of both GC subtypes. In the presence of blockers of fast synaptic transmission (APV, CNQX, gabazine), DHPG directly depolarized both GC subtypes, although the two GC subtypes responded differentially to DHPG in mGluR1−/− and mGluR5−/− mice. DHPG depolarized sGCs in slices from mGluR5−/− mice, although it had no effect on sGCs in slices from mGluR1−/− mice. By contrast, DHPG depolarized dGCs in slices from mGluR1−/− mice but had no effect on dGCs in slices from mGluR5−/− mice. Previous studies showed that mitral cells express mGluR1 but not mGluR5. The present results therefore suggest that sGCs are more similar to mitral cells than dGCs in terms of mGluR expression.


Sign in / Sign up

Export Citation Format

Share Document