scholarly journals Structural Domains of the CB1 Cannabinoid Receptor That Contribute to Constitutive Activity and G-Protein Sequestration

2001 ◽  
Vol 21 (22) ◽  
pp. 8758-8764 ◽  
Author(s):  
Jingjiang Nie ◽  
Deborah L. Lewis
2014 ◽  
Vol 54 (1) ◽  
pp. 75-89 ◽  
Author(s):  
Pál Gyombolai ◽  
András D Tóth ◽  
Dániel Tímár ◽  
Gábor Turu ◽  
László Hunyady

The role of the highly conserved ‘DRY’ motif in the signaling of the CB1cannabinoid receptor (CB1R) was investigated by inducing single-, double-, and triple-alanine mutations into this site of the receptor. We found that the CB1R-R3.50A mutant displays a partial decrease in its ability to activate heterotrimeric Goproteins (∼80% of WT CB1R (CB1R-WT)). Moreover, this mutant showed an enhanced basal β-arrestin2 (β-arr2) recruitment. More strikingly, the double-mutant CB1R-D3.49A/R3.50A was biased toward β-arrs, as it gained a robustly increased β-arr1 and β-arr2 recruitment ability compared with the WT receptor, while its G-protein activation was decreased. In contrast, the double-mutant CB1R-R3.50A/Y3.51A proved to be G-protein-biased, as it was practically unable to recruit β-arrs in response to agonist stimulus, while still activating G-proteins, although at a reduced level (∼70% of CB1R-WT). Agonist-induced ERK1/2 activation of the CB1R mutants showed a good correlation with their β-arr recruitment ability but not with their G-protein activation or inhibition of cAMP accumulation. Our results suggest that G-protein activation and β-arr binding of the CB1R are mediated by distinct receptor conformations, and the conserved ‘DRY’ motif plays different roles in the stabilization of these conformations, thus mediating both G-protein- and β-arr-mediated functions of CB1R.


2002 ◽  
Vol 121 (1-2) ◽  
pp. 91-109 ◽  
Author(s):  
Somnath Mukhopadhyay ◽  
Joong-Youn Shim ◽  
Abdel-Azim Assi ◽  
Derek Norford ◽  
Allyn C. Howlett

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5413
Author(s):  
Luciana M. Leo ◽  
Mary E. Abood

The CB1 cannabinoid receptor is a G-protein coupled receptor highly expressed throughout the central nervous system that is a promising target for the treatment of various disorders, including anxiety, pain, and neurodegeneration. Despite the wide therapeutic potential of CB1, the development of drug candidates is hindered by adverse effects, rapid tolerance development, and abuse potential. Ligands that produce biased signaling—the preferential activation of a signaling transducer in detriment of another—have been proposed as a strategy to dissociate therapeutic and adverse effects for a variety of G-protein coupled receptors. However, biased signaling at the CB1 receptor is poorly understood due to a lack of strongly biased agonists. Here, we review studies that have investigated the biased signaling profile of classical cannabinoid agonists and allosteric ligands, searching for a potential therapeutic advantage of CB1 biased signaling in different pathological states. Agonist and antagonist bound structures of CB1 and proposed mechanisms of action of biased allosteric modulators are used to discuss a putative molecular mechanism for CB1 receptor activation and biased signaling. Current studies suggest that allosteric binding sites on CB1 can be explored to yield biased ligands that favor or hinder conformational changes important for biased signaling.


Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
J Gertsch ◽  
M Leonti ◽  
L Casu ◽  
F Cottiglia ◽  
S Raduner ◽  
...  

2013 ◽  
Author(s):  
Yves Louis Mear ◽  
Xavier Come Donato ◽  
Marie Pierre Blanchard ◽  
Celine Defilles ◽  
Christophe Lisbonis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document