scholarly journals A Role for Phosphorylation in the Maintenance of Resurgent Sodium Current in Cerebellar Purkinje Neurons

2002 ◽  
Vol 22 (8) ◽  
pp. 3100-3107 ◽  
Author(s):  
Tina M. Grieco ◽  
Fatemeh S. Afshari ◽  
Indira M. Raman
2004 ◽  
Vol 92 (2) ◽  
pp. 726-733 ◽  
Author(s):  
Michael Tri H. Do ◽  
Bruce P. Bean

In some central neurons, including cerebellar Purkinje neurons and subthalamic nucleus (STN) neurons, TTX-sensitive sodium channels show unusual gating behavior whereby some channels open transiently during recovery from inactivation. This “resurgent” sodium current is effectively activated immediately after action potential-like waveforms. Earlier work using Purkinje neurons suggested that the great majority of resurgent current originates from Nav1.6 sodium channels. Here we used a mouse mutant lacking Nav1.6 to explore the contribution of these channels to resurgent, transient, and persistent components of TTX-sensitive sodium current in STN neurons. The resurgent current of STN neurons from Nav1.6−/− mice was reduced by 63% relative to wild-type littermates, a less dramatic reduction than that observed in Purkinje neurons recorded under identical conditions. The transient and persistent currents of Nav1.6−/− STN neurons were reduced by ∼40 and 55%, respectively. The resurgent current present in Nav1.6−/− null STN neurons was similar in voltage dependence to that in wild-type STN and Purkinje neurons, differing only in having somewhat slower decay kinetics. These results show that sodium channels other than Nav1.6 can make resurgent sodium current much like that from Nav1.6 channels.


2021 ◽  
Author(s):  
Joseph L. Ransdell ◽  
Jonathan D. Moreno ◽  
Druv Bhagavan ◽  
Jonathan R. Silva ◽  
Jeanne M. Nerbonne

ABSTRACTThe resurgent component of the voltage-gated sodium current (INaR) is a depolarizing conductance, revealed on membrane hyperpolarizations following brief depolarizing voltage steps, which has been shown to contribute to regulating the firing properties of numerous neuronal cell types throughout the central and peripheral nervous systems. Although mediated by the same voltage-gated sodium (Nav) channels that underlie the transient and persistent Nav current components, the gating mechanisms that contribute to the generation of INaR remain unclear. Here, we characterized Nav currents in mouse cerebellar Purkinje neurons, and used tailored voltage-clamp protocols to define how the voltage and the duration of the initial membrane depolarization affect the amplitudes and kinetics of INaR. Using the acquired voltage-clamp data, we developed a novel Markov kinetic state model with parallel (fast and slow) inactivation pathways and, we show that this model reproduces the properties of the resurgent, as well as the transient and persistent, Nav currents recorded in (mouse) cerebellar Purkinje neurons. Based on the acquired experimental data and the simulations, we propose that resurgent Na+ influx occurs as a result of fast inactivating Nav channels transitioning into an open/conducting state on membrane hyperpolarization, and that the decay of INaR reflects the slow accumulation of recovered/opened Nav channels into a second, alternative and more slowly populated, inactivated state. Additional simulations reveal that extrinsic factors that affect the kinetics of fast or slow Nav channel inactivation and/or impact the relative distribution of Nav channels in the fast- and slow-inactivated states, such as the accessory Navβ4 channel subunit, can modulate the amplitude of INaR.SUMMARYThe resurgent component of the voltage-gated sodium current (INaR) is revealed on membrane hyperpolarizations following brief depolarizing voltage steps that activate the rapidly activating and inactivating, transient Nav current (INaT). To probe the mechanisms contributing to the generation and properties of INaR, we combined whole-cell voltage-clamp recordings from mouse cerebellar Purkinje neurons with computational modeling to develop a novel, blocking particle-independent, model for the gating of INaR that involves two parallel inactivation pathways, and we show that this model recapitulates the detailed biophysical properties of INaR measured in mouse cerebellar Purkinje neurons.


2021 ◽  
Vol 15 ◽  
Author(s):  
Giulia Quattrocolo ◽  
Keagan Dunville ◽  
Maximiliano José Nigro

In the late ’90, Dr. Indira Raman, at the time a postdoctoral fellow with Dr. Bruce Bean, at Harvard University, identified a new type of sodium current, flowing through the channels that reopens when the membrane is repolarized. This current, called “resurgent Sodium current,” was originally identified in cerebellar Purkinje neurons and has now been confirmed in around 20 different neuronal types. Since moving to Northwestern University in 1999 to establish her own research group, Dr. Raman has dedicated great efforts in identifying the mechanisms supporting the resurgent Sodium current and how its biophysical properties shape the firing of the different cell types. Her work has impacted greatly the field of cellular neurophysiology, from basic research to translation neuroscience. In fact, alterations in the resurgent sodium currents have been observed in several neuropathologies, from Huntington’s disease to epilepsy. In this Perspective we will focus on the current knowledge on the expression and function of the resurgent Sodium current in neurons of the cerebral cortex and hippocampus. We will also briefly highlight the role of Dr. Raman’s as teacher and mentor, not only for her pupils, but for the whole scientific community.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Haidun Yan ◽  
Juan L Pablo ◽  
Chaojian Wang ◽  
Geoffrey S Pitt

Rapid firing of cerebellar Purkinje neurons is facilitated in part by a voltage-gated Na+ (NaV) ‘resurgent’ current, which allows renewed Na+ influx during membrane repolarization. Resurgent current results from unbinding of a blocking particle that competes with normal channel inactivation. The underlying molecular components contributing to resurgent current have not been fully identified. In this study, we show that the NaV channel auxiliary subunit FGF14 ‘b’ isoform, a locus for inherited spinocerebellar ataxias, controls resurgent current and repetitive firing in Purkinje neurons. FGF14 knockdown biased NaV channels towards the inactivated state by decreasing channel availability, diminishing the ‘late’ NaV current, and accelerating channel inactivation rate, thereby reducing resurgent current and repetitive spiking. Critical for these effects was both the alternatively spliced FGF14b N-terminus and direct interaction between FGF14b and the NaV C-terminus. Together, these data suggest that the FGF14b N-terminus is a potent regulator of resurgent NaV current in cerebellar Purkinje neurons.


Sign in / Sign up

Export Citation Format

Share Document