scholarly journals Brain Factor-1Controls the Proliferation and Differentiation of Neocortical Progenitor Cells through Independent Mechanisms

2002 ◽  
Vol 22 (15) ◽  
pp. 6526-6536 ◽  
Author(s):  
Carina Hanashima ◽  
Lijian Shen ◽  
Suzanne C. Li ◽  
Eseng Lai
Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Amabel M Orogo ◽  
Dieter A Kubli ◽  
Anne N Murphy ◽  
Åsa B Gustafsson

Activation and participation of cardiac progenitor cells (CPCs) in regeneration are critical for effective repair in the wake of pathologic injury. Stem cell activation and commitment involve increased energy demand and mitochondrial biogenesis. To date, little attention has been paid to the importance of mitochondria in CPC survival, proliferation and differentiation. CPC function is reduced with age but the underlying mechanism is still unclear. Mitochondrial DNA (mtDNA) is more susceptible to oxidative attacks than nuclear DNA due to its proximity to the mitochondrial respiratory chain and lack of protective histone-like proteins. With age, mtDNA accumulates mutations that can impair mitochondrial respiration and increase ROS production. In this study, we examined the effects of accumulating mtDNA mutations on CPC proliferation and survival. We have found that incubation of uncommitted c-kit+ CPCs in differentiation medium increased mitochondrial mass and expansion of the mitochondrial network, which correlated with increased cell size and expression of cardiac lineage commitment markers. Differentiation activated mitochondrial biogenesis, increased mtDNA copy number, and enhanced oxidative capacity and cellular ATP levels in CPCs. To investigate the effect of mtDNA mutations and aging on CPC survival and function, we utilized a mouse model in which a mutation in the mtDNA polymerase γ (POLG m/m ) leads to accumulation of mtDNA mutations, mitochondrial dysfunction, and accelerated aging. Isolated CPCs from hearts of 2-month old POLG m/m mice had reduced proliferation and were more susceptible to oxidative stress and chemotherapeutic agents compared to WT CPCs. The majority of POLG m/m CPCs contained fragmented mitochondria as shown by immunostaining. Incubation in differentiation medium resulted in fewer GATA-4 positive POLG m/m CPCs compared to WT CPCs. The reduced differentiation in these POLG m/m CPCs correlated with reduced PGC-1α expression and OXPHOS protein levels, suggesting that mitochondrial biogenesis is impaired. These data demonstrate that mitochondria play a critical role in CPC function, and accumulation of mtDNA mutations impairs CPC function and reduces their repair potential.


2011 ◽  
Vol 46 (1) ◽  
pp. 325-332 ◽  
Author(s):  
Marion N. Schölzke ◽  
Amely Röttinger ◽  
Sasidhar Murikinati ◽  
Nadine Gehrig ◽  
Christoph Leib ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Johannes Menzel-Severing ◽  
Matthias Zenkel ◽  
Naresh Polisetti ◽  
Elisabeth Sock ◽  
Michael Wegner ◽  
...  

2021 ◽  
Vol 25 (2) ◽  
pp. 114-126
Author(s):  
E. A. Teplyashina ◽  
Y. K. Komleva ◽  
E. V. Lychkovskaya ◽  
A. S. Deikhina ◽  
A. B. Salmina

Brain development is a unique process characterized by mechanisms defined as neuroplasticity (synaptogenesis, synapse elimination, neurogenesis, and cerebral angiogenesis). Numerous neurodevelopmental disorders brain damage, and aging are manifested by neurological deficits that are caused by aberrant neuroplasticity. The presence of stem and progenitor cells in neurogenic niches of the brain is responsible for the formation of new neurons capable of integrating into preexisting synaptic assemblies. The determining factors for the cells within the neurogenic niche are the activity of the vascular scaffold and the availability of active regulatory molecules that establish the optimal microenvironment. It has been found that regulated intramembrane proteolysis plays an important role in the control of neurogenesis in brain neurogenic niches. Molecules generated by the activity of specific proteases can stimulate or suppress the activity of neural stem and progenitor cells, their proliferation and differentiation, migration and integration of newly formed neurons into synaptic networks. Local neoangiogenesis supports the processes of neurogenesis in neurogenic niches, which is guaranteed by the multivalent action of peptides formed from transmembrane proteins. Identification of new molecules regulating the neuroplasticity (neurogenesis and angiogenesis). i. e. enzymes, substrates, and products of intramembrane proteolysis, will ensure the development of protocols for detecting the neuroplasticity markers and targets for efficient pharmacological modulation.


Sign in / Sign up

Export Citation Format

Share Document