Metaplastic reinforcement of long-term potentiation in hippocampal area CA2 by cholinergic receptor activation

2021 ◽  
pp. JN-RM-2885-20
Author(s):  
Amrita Benoy ◽  
Mohammad Zaki Bin Ibrahim ◽  
Thomas Behnisch ◽  
Sreedharan Sajikumar
2020 ◽  
Author(s):  
Amrita Benoy ◽  
Mohammad Zaki Bin Ibrahim ◽  
Thomas Behnisch ◽  
Sreedharan Sajikumar

AbstractHippocampal CA2, an inconspicuously positioned area between the well-studied CA1 and CA3 subfields, has captured research interest in recent years due to its role in the formation of social memory. The effects of synaptic depression for subsequent long-term potentiation (LTP) of synaptic transmission at entorhinal cortical (EC)-CA2 and Schaffer collateral (SC)-CA2 synapses have not been previously explored. Here we show that cholinergic receptor activation with the non-selective cholinergic agonist carbachol (CCh) triggers a long-term synaptic depression (CCh-LTD) of field excitatory postsynaptic potentials at EC- and SC-CA2 synapses in the hippocampus of adult rats. The activation of muscarinic acetylcholine receptors (mAChRs) is critical for the induction of an early phase (<100 min) of CCh-LTD, with a strong dependency upon M3 mAChR activation and a weaker one by M1 mAChRs. Interestingly, muscarinic M2 and nicotinic receptor activation are crucially involved in the late phase (>100 min) of CCh-LTD. Importantly, CCh priming lowers the threshold, in a protein synthesis-dependent manner, for the late maintenance of LTP that can be subsequently induced by high-frequency electrical stimulation at EC- or SC-CA2 pathways. The results demonstrate that CA2 synaptic learning rules are modified in a metaplastic manner, wherein synaptic modifications triggered by cholinergic stimulation can dictate the outcome of future plasticity events. Moreover, the observed enabling of late LTP at EC inputs to CA2 following the priming stimulus co-exists with concurrent sustained CCh-LTD at SC-CA2 and is dynamically scaled by modulation of SC-CA2 synaptic transmission.Significance StatementThe release of the neuromodulator acetylcholine is critically involved in processes of hippocampus-dependent memory formation. Cholinergic afferents originating in the medial septum and diagonal bands of Broca terminating in the hippocampal area CA2 might play an important role in the modulation of area-specific synaptic plasticity. Our findings demonstrate that cholinergic receptor activation induces a long-term depression of synaptic transmission at entorhinal cortical- and Schaffer collateral-CA2 synapses. This cholinergic activation-mediated long-term depression displays a bidirectional metaplastic switch to long-term potentiation on a future timescale. This suggests that such bidirectional synaptic modifications triggered by the dynamic modulation of tonic cholinergic receptor activation may support the formation of CA2-dependent memories given the increased hippocampal cholinergic tone during active wakefulness observed in exploratory behaviour.


1998 ◽  
Vol 80 (1) ◽  
pp. 452-457 ◽  
Author(s):  
Eric Klann

Klann, Eric. Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CA1. J. Neurophysiol. 80: 452–457, 1998. Long-term potentiation (LTP) in hippocampal area CA1 is generally dependent on N-methyl-d-aspartate (NMDA) receptor activation. Reactive oxygen species (ROS), including superoxide, are produced in response to NMDA receptor activation in a number of brain regions, including the hipppocampus. In this study, two cell-permeable manganese porphyrin compounds that mimic superoxide dismutase (SOD) were used to determine whether production of superoxide is required for the induction of LTP in area CA1 of rat hippocampal slices. Incubation of hippocampal slices with either Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) or Mn(III) tetrakis (1-methyl-4-pyridyl) porphyrin (MnTMPyP) prevented the induction of LTP. Incubation of slices with either light-inactivated MnTBAP or light-inactivated MnTMPyP had no effect on induction of LTP. Neither MnTBAP nor MnTMPyP was able to reverse preestablished LTP. These observations suggest that production of superoxide occurs in response to LTP-inducing stimulation and that superoxide is necessary for the induction of LTP.


2001 ◽  
Vol 85 (1) ◽  
pp. 117-124 ◽  
Author(s):  
J.N.D. Kerr ◽  
J. R. Wickens

Dopamine and glutamate are key neurotransmitters involved in learning and memory mechanisms of the brain. These two neurotransmitter systems converge on nerve cells in the neostriatum. Dopamine modulation of activity-dependent plasticity at glutamatergic corticostriatal synapses has been proposed as a cellular mechanism for learning in the neostriatum. The present research investigated the role of specific subtypes of dopamine receptors in long-term potentiation (LTP) in the corticostriatal pathway, using intracellular recording from striatal neurons in a corticostriatal slice preparation. In agreement with previous reports, LTP could be induced reliably under Mg2+-free conditions. This Mg2+-free LTP was blocked by dopamine depletion and by the dopamine D-1/D-5 receptor antagonist SCH 23390 but was not blocked by the dopamine D-2 receptor antagonist remoxipride or the GABAA antagonist picrotoxin. In dopamine-depleted slices, the ability to induce LTP could be restored by bath application of the dopamine D-1/D-5 receptor agonist, SKF 38393. These results show that activation of dopamine D-1/D-5 receptors by either endogenous dopamine or exogenous dopamine agonists is a requirement for the induction of LTP in the corticostriatal pathway. These findings have significance for current understanding of learning and memory mechanisms of the neostriatum and for theoretical understanding of the mechanism of action of drugs used in the treatment of psychotic illnesses and Parkinson's disease.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Mahua Chatterjee ◽  
Fernando Perez de los Cobos Pallares ◽  
Alex Loebel ◽  
Michael Lukas ◽  
Veronica Egger

During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs), occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS) protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm”) can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse.


Physiology ◽  
1994 ◽  
Vol 9 (6) ◽  
pp. 256-260
Author(s):  
D Debanne ◽  
SM Thompson

Two opposing types of plasticity at excitatory synapses in the hippocampus, long-term potentiation and depression, require N-methyl-D-aspartate receptor activation and Ca2+ influx for their induction.The direction of the change in synaptic strength is determined by a balance between phosphorylation and dephosphorylation, as regulated by protein kinases and phosphatases that are activated selectively by different levels of intracellular Ca2+.


Neuroreport ◽  
1998 ◽  
Vol 9 (5) ◽  
pp. 847-850 ◽  
Author(s):  
Sean Commins ◽  
John Gigg ◽  
Michael Anderson ◽  
Shane M. OʼMara

2003 ◽  
Vol 358 (1432) ◽  
pp. 721-726 ◽  
Author(s):  
Roger A. Nicoll

This review summarizes the various experiments that have been carried out to determine if the expression of long-term potentiation (LTP), in particular N -methyl-D-aspartate (NMDA) receptor-dependent LTP, is presynaptic or postsynaptic. Evidence for a presynaptic expression mechanism comes primarily from experiments reporting that glutamate overflow is increased during LTP and from experiments showing that the failure rate decreases during LTP. However, other experimental approaches, such as monitoring synaptic glutamate release by recording astrocytic glutamate transporter currents, have failed to detect any change in glutamate release during LTP. In addition, the discovery of silent synapses, in which LTP rapidly switches on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function at NMDA-receptor-only synapses, provides a postsynaptic mechanism for the decrease in failures during LTP. It is argued that the preponderance of evidence favours a postsynaptic expression mechanism, whereby NMDA receptor activation results in the rapid recruitment of AMPA receptors as well as a covalent modification of synaptic AMPA receptors.


Sign in / Sign up

Export Citation Format

Share Document