scholarly journals cAMP-Dependent Protein Kinase Postsynaptic Localization Regulated by NMDA Receptor Activation through Translocation of an A-Kinase Anchoring Protein Scaffold Protein

2006 ◽  
Vol 26 (9) ◽  
pp. 2391-2402 ◽  
Author(s):  
K. E. Smith
2000 ◽  
Vol 84 (3) ◽  
pp. 1279-1288 ◽  
Author(s):  
Kuei-Sen Hsu ◽  
Wen-Chia Ho ◽  
Chiung-Chun Huang ◽  
Jing-Jane Tsai

Previous work has shown that seizure-like activity can disrupt the induction of long-term potentiation (LTP). However, how seizure-like event disrupts the LTP induction remains unknown. To understand the cellular and molecular mechanisms underlying this process better, a set of studies was implemented in area CA1 of rat hippocampal slices using extracellular recording methods. We showed here that prior transient seizure-like activity generated by perfused slices with Mg2+-free artificial cerebrospinal fluid (ACSF) exhibited a persistent suppression of LTP induction. This effect lasted between 2 and 3 h after normal ACSF replacement and was specifically inhibited by N-methyl-d-aspartate (NMDA) receptor antagonistd-2-amino-5-phosphovaleric acid (d-APV) and L-type voltage-operated Ca2+ channel (VOCC) blocker nimodipine, but not by non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In addition, this suppressive effect was specifically blocked by the selective protein kinase C (PKC) inhibitor NPC-15437. However, neither Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62 nor cAMP-dependent protein kinase inhibitor Rp-adenosine 3′,5′-cyclic monophosphothioate (Rp-cAMPS) affected this suppressive effect. This persistent suppression of LTP was not secondary to the long-lasting changes in NMDA receptor activation, because the isolated NMDA receptor–mediated responses did not show a long-term enhancement in response to a 30-min Mg2+-free ACSF application. Additionally, in prior Mg2+-free ACSF–treated slices, the entire frequency-response curve of LTP and long-term depression (LTD) is shifted systematically to favor LTD. These results suggest that the increase of Ca2+ influx through NMDA channels and L-type VOCCs in turn triggering a PKC-dependent signaling cascade is a possible cellular basis underlying this seizure-like activity-induced inhibition of LTP.


2020 ◽  
Vol 92 (3) ◽  
Author(s):  
Nidia Carolina Moreno‐Corona ◽  
Orestes Lopez‐Ortega ◽  
Jose Mizael Flores Hermenegildo ◽  
Laura Berron‐Ruiz ◽  
Juan Carlos Rodriguez‐Alba ◽  
...  

1997 ◽  
Vol 78 (2) ◽  
pp. 759-766 ◽  
Author(s):  
Cui-Wei Xie ◽  
Darrell V. Lewis

Xie, Cui-Wei and Darrell V. Lewis. Involvement of cAMP-dependent protein kinase in μ-opioid modulation of NMDA-mediated synaptic currents. J. Neurophysiol. 78: 759–766, 1997. We have previously reported dual effects of μ-opioids on N-methyl-d-aspartate (NMDA)-receptor-mediated synaptic events in the hippocampal dentate gyrus: an indirect facilitating effect via suppression of GABAergic interneurons (disinhibition) and a direct inhibitory effect in the presence of γ-aminobutyric acid-A (GABAA) antagonists. The cellular mechanism underlying the inhibitory effect of μ-opioids remains to be determined. In the present study we examine the role of adenosine 3′,5′-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) in μ-opioid-induced inhibition of NMDA currents in rat hippocampal slices. NMDA-receptor-mediated excitatory postsynaptic currents (NMDA EPSCs) were evoked by stimulating the lateral perforant path and were recorded from dentate granule cells with the use of whole cell voltage-clamp techniques in the presence of the GABAA antagonist and a non-NMDA type of glutamate receptor antagonist. Two selective μ-agonists, [N-MePhe3, D-Pro4]-morphiceptin and [D-Ala2, N-MePhe4, Gly-ol5]-enkephalin, induced dose-dependent inhibition of NMDA EPSCs in a concentration range of 0.3–10 μM. This inhibitory effect could be completely reversed by the opioid antagonists naloxone or prevented by a selective μ-antagonist cyprodime, but was not affected by removal of Mg2+ from the external perfusion medium. Intracellular application of pertussis toxin (PTX) into the granule cell via whole cell recording pipettes completely prevented μ-opioid-induced reduction in NMDA currents, suggesting that a postsynaptic mechanism involving PTX-sensitive G proteins might be responsible for the inhibitory action of μ-opioids. Further studies were conducted to identify the intracellular messengers that coupled with G proteins and transduced the effect of μ-opioids in granule cells. The adenylate cyclase activator forskolin was found to enhance NMDA-receptor-mediated synaptic responses and to reverse the inhibitory effect of μ-opioids. Sp-cAMPS, a specific PKA activator, also enhanced NMDA EPSCs, whereas the PKA inhibitor Rp-cAMPS reduced NMDA EPSCs and occluded further inhibition of the current by μ-opioids. These findings strongly suggest that NMDA receptor function is subject to the modulation by PKA, and that μ-opioids can inhibit NMDA currents through suppression of the cAMP cascade in the postsynaptic neuron. Combined with our previous findings, the present results also indicate that μ-opioids can modulate NMDA-receptor-mediated synaptic activity in a complex manner. The net effect of μ-opioids in the dentate gyrus may depend on the interplay between its disinhibitory action, which facilitates NMDA-receptor-mediated responses, and its inhibitory action on the cAMP cascade.


ChemBioChem ◽  
2010 ◽  
Vol 11 (7) ◽  
pp. 963-971 ◽  
Author(s):  
Duangnapa Kovanich ◽  
Marcel A. G. van der Heyden ◽  
Thin Thin Aye ◽  
Toon A. B. van Veen ◽  
Albert J. R. Heck ◽  
...  

2004 ◽  
Vol 381 (3) ◽  
pp. 587-592 ◽  
Author(s):  
Jennifer J. CARLISLE MICHEL ◽  
Kimberly L. DODGE ◽  
Wei WONG ◽  
Nicole C. MAYER ◽  
Lorene K. LANGEBERG ◽  
...  

mAKAP (muscle-selective A-kinase-anchoring protein) co-ordinates a cAMP-sensitive negative-feedback loop comprising PKA (cAMP-dependent protein kinase) and the cAMP-selective PDE4D3 (phosphodiesterase 4D3). In vitro and cellular experiments demonstrate that PKA-phosphorylation of PDE4D3 on Ser-13 increases the affinity of PDE4D3 for mAKAP. Our data suggest that activation of mAKAP-anchored PKA enhances the recruitment of PDE4D3, allowing for quicker signal termination.


Sign in / Sign up

Export Citation Format

Share Document