scholarly journals Facilitation of Saccadic Eye Movements by Postsaccadic Electrical Stimulation in the Primate Caudate

2006 ◽  
Vol 26 (50) ◽  
pp. 12885-12895 ◽  
Author(s):  
K. Nakamura ◽  
O. Hikosaka
2016 ◽  
Vol 116 (6) ◽  
pp. 2541-2549 ◽  
Author(s):  
John R. Economides ◽  
Daniel L. Adams ◽  
Jonathan C. Horton

The superior colliculus is a major brain stem structure for the production of saccadic eye movements. Electrical stimulation at any given point in the motor map generates saccades of defined amplitude and direction. It is unknown how this saccade map is affected by strabismus. Three macaques were raised with exotropia, an outwards ocular deviation, by detaching the medial rectus tendon in each eye at age 1 mo. The animals were able to make saccades to targets with either eye and appeared to alternate fixation freely. To probe the organization of the superior colliculus, microstimulation was applied at multiple sites, with the animals either free-viewing or fixating a target. On average, microstimulation drove nearly conjugate saccades, similar in both amplitude and direction but separated by the ocular deviation. Two monkeys showed a pattern deviation, characterized by a systematic change in the relative position of the two eyes with certain changes in gaze angle. These animals' saccades were slightly different for the right eye and left eye in their amplitude or direction. The differences were consistent with the animals' underlying pattern deviation, measured during static fixation and smooth pursuit. The tectal map for saccade generation appears to be normal in strabismus, but saccades may be affected by changes in the strabismic deviation that occur with different gaze angles.


2013 ◽  
Vol 110 (2) ◽  
pp. 334-343 ◽  
Author(s):  
Masayuki Watanabe ◽  
Douglas P. Munoz

Electrical stimulation has been delivered to the basal ganglia (BG) to treat intractable symptoms of a variety of clinical disorders. However, it is still unknown how such treatments improve behavioral symptoms. A difficulty of this problem is that artificial signals created by electrical stimulation interact with intrinsic signals before influencing behavior, thereby making it important to understand how such interactions between artificial and intrinsic signals occur. We addressed this issue by analyzing the effects of electrical stimulation under the following two behavioral conditions that induce different states of intrinsic signals: 1) subjects behave spontaneously without task demands; and 2) subjects perform a behavioral paradigm purposefully. We analyzed saccadic eye movements in monkeys while delivering microstimulation to the head and body of the caudate nucleus, a major input stage of the oculomotor BG. When monkeys generated spontaneous saccades, caudate microstimulation biased saccade vector endpoints toward the contralateral direction of stimulation sites. However, when caudate microstimulation was delivered during a purposive prosaccade (look toward a visual stimulus) or an antisaccade (look away from a stimulus) paradigm, it created overall ipsilateral biases by suppressing contralateral saccades more strongly than ipsilateral saccades. These results suggest that the impact of BG electrical stimulation changes dynamically depending on the state of intrinsic signals that vary under a variety of behavioral demands in everyday life.


1997 ◽  
Vol 77 (5) ◽  
pp. 2252-2267 ◽  
Author(s):  
Douglas D. Burman ◽  
Charles J. Bruce

Burman, Douglas D. and Charles J. Bruce. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field. J. Neurophysiol. 77: 2252–2267, 1997. Patients with frontal lobe damage have difficulty suppressing reflexive saccades to salient visual stimuli, indicating that frontal lobe neocortex helps to suppress saccades as well as to produce them. In the present study, a role for the frontal eye field (FEF) in suppressing saccades was demonstrated in macaque monkeys by application of intracortical microstimulation during the performance of a visually guided saccade task, a memory prosaccade task, and a memory antisaccade task. A train of low-intensity (20–50 μA) electrical pulses was applied simultaneously with the disappearance of a central fixation target, which was always the cue to initiate a saccade. Trials with and without stimulation were compared, and significantly longer saccade latencies on stimulation trials were considered evidence of suppression. Low-intensity stimulation suppressed task-related saccades at 30 of 77 sites tested. In many cases saccades were suppressed throughout the microstimulation period (usually 450 ms) and then executed shortly after the train ended. Memory-guided saccades were most dramatically suppressed and were often rendered hypometric, whereas visually guided saccades were less severely suppressed by stimulation. At 18 FEF sites, the suppression of saccades was the only observable effect of electrical stimulation. Contraversive saccades were usually more strongly suppressed than ipsiversive ones, and cells recorded at such purely suppressive sites commonly had either foveal receptive fields or postsaccadic responses. At 12 other FEF sites at which saccadic eye movements were elicited at low thresholds, task-related saccades whose vectors differed from that of the electrically elicited saccade were suppressed by electrical stimulation. Such suppression at saccade sites was observed even with currents below the threshold for eliciting saccades. Pure suppression sites tended to be located near or in the fundus, deeper in the anterior bank of the arcuate than elicited saccade sites. Stimulation in the prefrontal association cortex anterior to FEF did not suppress saccades, nor did stimulation in premotor cortex posterior to FEF. These findings indicate that the primate FEF can help orchestrate saccadic eye movements by suppressing inappropriate saccade vectors as well as by selecting, specifying, and triggering appropriate saccades. We hypothesize that saccades could be suppressed both through local FEF interactions and through FEF projections to subcortical regions involved in maintaining fixation.


2005 ◽  
Vol 93 (1) ◽  
pp. 1-19 ◽  
Author(s):  
E. J. Tehovnik ◽  
W. M. Slocum ◽  
C. E. Carvey ◽  
P. H. Schiller

The purpose of this review is to critically examine phosphene induction and saccadic eye movement generation by electrical microstimulation of striate cortex (area V1) in humans and monkeys. The following issues are addressed: 1) Properties of electrical stimulation as they pertain to the activation of V1 elements; 2) the induction of phosphenes in sighted and blind human subjects elicited by electrical stimulation using various stimulation parameters and electrode types; 3) the induction of phosphenes with electrical microstimulation of V1 in monkeys; 4) the generation of saccadic eye movements with electrical microstimulation of V1 in monkeys; and 5) the tasks involved for the development of a cortical visual prosthesis for the blind. In this review it is concluded that electrical microstimulation of area V1 in trained monkeys can be used to accelerate the development of an effective prosthetic device for the blind.


1994 ◽  
Vol 72 (6) ◽  
pp. 2648-2664 ◽  
Author(s):  
R. J. Cowie ◽  
D. L. Robinson

1. These studies were initiated to understand the neural sites and mechanisms controlling head movements during gaze shifts. Gaze shifts are made by saccadic eye movements with and without head movements. Sites were stimulated electrically within the brain stem of awake, trained monkeys relatively free to make head movements to study the head-movement components of gaze shifts. 2. Electrical stimulation in and around the gigantocellular reticular nucleus evoked head movements in the ipsilateral direction. Gaze shifts were never evoked from these sites, presumably because the vestibulo-ocular reflex compensated. The rough topography of this region included large head movements laterally, small movements medially, downward movements from dorsal sites, and upward movements more ventrally. 3. The initial position of the head influenced the magnitude of the elicited movement with larger movements produced when the head was directed to the contralateral side. Attentive fixation was associated with larger and faster head movements when compared with those evoked during spontaneous behavior. 4. The superior colliculus makes a significant contribution to gaze shifts and has been shown to contribute to head movements. Because the colliculus is a major source of afferents to the gigantocellular reticular nucleus, comparable stimulation studies of the superior colliculus were conducted. When the colliculus was excited, shifts of gaze in the contralateral direction were predominant. These were most often accomplished by saccadic eye movements, however, we frequently elicited head movements that had an average latency 10 ms longer than those elicited from the reticular head movement region. Sites evoking head movements tended to be deeper and more caudal than loci eliciting eye movements. Neither the onset latencies, amplitudes, nor peak velocities of head movements and eye movements were correlated. Gaze shifts evoked from the caudal colliculus with the head free were larger than those elicited from the same site with the head fixed. 5. These studies demonstrate that both the superior colliculus and gigantocellular reticular nucleus mediate head movements. The colliculus plays a role in orienting to external events, and so collicular head movements predominantly were associated with gaze shifts, with the eye and head movements uncoupled. The medullary reticular system may play a role in the integration of a wider range of movements. Head movements from the medullary reticular sites probably participate in several forms of head movements, such as those that are related to postural reflexes, started volitionally, and/or oriented to external events.


1998 ◽  
Vol 79 (3) ◽  
pp. 1193-1209 ◽  
Author(s):  
Douglas P. Munoz ◽  
Peter J. Istvan

Munoz, Douglas P. and Peter J. Istvan. Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. J. Neurophysiol. 79: 1193–1209, 1998. The intermediate layers of the monkey superior colliculus (SC) contain neurons the discharges of which are modulated by visual fixation and saccadic eye movements. Fixation neurons, located in the rostral pole of the SC, discharge action potentials tonically during visual fixation and pause for most saccades. Saccade neurons, located throughout the remainder of the intermediate layers of the SC, discharge action potentials for saccades to a restricted region of the visual field. We defined the fixation zone as that region of the rostral SC containing fixation neurons and the saccade zone as the remainder of the SC. It recently has been hypothesized that a network of local inhibitory interneurons may help shape the reciprocal discharge pattern of fixation and saccade neurons. To test this hypothesis, we combined extracellular recording and microstimulation techniques in awake monkeys trained to perform oculomotor paradigms that enabled us to classify collicular fixation and saccade neurons. Microstimulation was used to electrically activate the fixation and saccade zones of the ipsilateral and contralateral SC to test for inhibitory and excitatory inputs onto fixation and saccade neurons. Saccade neurons were inhibited at short latencies following electrical stimulation of either the ipsilateral (1–5 ms) or contralateral (2–7 ms) fixation or saccade zones. Fixation neurons were inhibited 1–4 ms after electrical stimulation of the ipsilateral saccade zone. Stimulation of the contralateral saccade zone led to much weaker inhibition of fixation neurons. Stimulation of the contralateral fixation zone led to short-latency (1–2 ms) excitation of fixation neurons. Only a small percentage of saccade and fixation neurons were activated by the electrical stimulation (latency: 0.5–2.0 ms). These responses were confirmed as either orthodromic or antidromic responses using collision testing. The results suggest that a local network of inhibitory interneurons may help shape not only the reciprocal discharge pattern of fixation and saccade neurons but also permit lateral interactions between all regions of the ipsilateral and contralateral SC. These interactions therefore may be critical for maintaining stable visual fixation, suppressing unwanted saccades, and initiating saccadic eye movements to targets of interest.


2002 ◽  
Vol 88 (4) ◽  
pp. 1675-1684 ◽  
Author(s):  
Stanislaw Sobotka ◽  
Wei Zuo ◽  
James L. Ringo

Local evoked potentials (LEPs), recorded in response to electrical stimulation, were used to study functional connectivity between different sites of the temporal lobe. Permanent electrodes were implanted in anterior and posterior positions of both inferotemporal cortex (IT) and hippocampal formation (HF). In each experimental session, one of these four sites was stimulated and LEPs were recorded in the others. Clear LEPs were found in the anterior and posterior IT sites in response to stimulation of the anterior as well as posterior HF. Bidirectional connections (as judged by the potentials) were found between the anterior and posterior sites of the same structure (IT or HF). The timing of the LEPs indicates that much of the response was carried in multisynaptic circuits. Stimulation delivered just after the monkey made a saccade produced larger late components in the LEPs than the same stimulation delivered without a saccade. The influence was maximal when the delay between the end of the saccade and the electrical stimulation was in the range of 50–100 ms. This saccadic modulation of the functional connectivity was observed within IT (bidirectional) and between posterior HF and IT (unidirectional).


1993 ◽  
Vol 70 (2) ◽  
pp. 576-589 ◽  
Author(s):  
D. P. Munoz ◽  
R. H. Wurtz

1. We tested the hypothesis that a subset of neurons, which we have referred to as fixation cells, located within the rostral pole of the monkey superior colliculus (SC) controls the generation of saccadic eye movements. We altered the activity of these neurons with either electrical stimulation or GABAergic drugs. 2. An increase in the activity of fixation cells in the rostral SC, induced by a train of low-frequency electrical stimulation, delayed the initiation of saccades. With bilateral stimulation the monkey was able to make saccades only after stimulation ceased. 3. Pulses of stimulation delivered during the saccade produced an interruption of the saccade in midflight. The latency to the onset of this perturbation was as short as 12 ms. 4. Injection of the gamma-aminobutyric acid (GABA) antagonist bicuculline into the rostral pole of the SC, which decreases normal GABA inhibition and increases cell activity, increased the latency of saccades to both visual and remembered targets. 5. Injection of the GABA agonist muscimol into the rostral SC, which increases normal GABA inhibition and decreases activity, reduced the latency for saccades to visual targets. The monkey also had difficulty maintaining visual fixation and suppressing unwanted saccades. 6. After muscimol injections, monkeys frequently made very short-latency saccades forming a peak in the saccade latency histogram at < 100 ms. These saccades are similar to express saccades made by normal monkeys. This finding suggests that the fixation cells in the rostral SC are critical for controlling the frequency of express saccades. 7. These results support the hypothesis that fixation cells in the rostral SC inhibit the generation of saccadic eye movements and that they form part of a system of oculomotor control, that of visual fixation.


2017 ◽  
Vol 117 (3) ◽  
pp. 1281-1292 ◽  
Author(s):  
Suraj Upadhyaya ◽  
Hui Meng ◽  
Vallabh E. Das

Disruption of binocular vision during the critical period for development leads to eye misalignment in humans and in monkey models. We have previously suggested that disruption within a vergence circuit could be the neural basis for strabismus. Electrical stimulation in the rostral superior colliculus (rSC) leads to vergence eye movements in normal monkeys. Therefore, the purpose of this study was to investigate the effect of SC stimulation on eye misalignment in strabismic monkeys. Electrical stimulation was delivered to 51 sites in the intermediate and deep layers of the SC (400 Hz, 0.5-s duration, 10–40 μA) in 3 adult optical prism-reared strabismic monkeys. Scleral search coils were used to measure movements of both eyes during a fixation task. Staircase saccades with horizontal and vertical components were elicited by stimulation as predicted from the SC topographic map. Electrical stimulation also resulted in significant changes in horizontal strabismus angle, i.e., a shift toward exotropia/esotropia depending on stimulation site. Electrically evoked saccade vector amplitude in the two eyes was not significantly different ( P > 0.05; paired t-test) but saccade direction differed. However, saccade disconjugacy accounted for only ~50% of the change in horizontal misalignment while disconjugate postsaccadic movements accounted for the other ~50% of the change in misalignment due to electrical stimulation. In summary, our data suggest that electrical stimulation of the SC of strabismic monkeys produces a change in horizontal eye alignment that is due to a combination of disconjugate saccadic eye movements and disconjugate postsaccadic movements. NEW & NOTEWORTHY Electrical stimulation of the superior colliculus in strabismic monkeys results in a change in eye misalignment. These data support the notion of developmental disruption of vergence circuits leading to maintenance of eye misalignment in strabismus.


2013 ◽  
Author(s):  
Sara Spotorno ◽  
Guillaume S. Masson ◽  
Anna Montagnini

Sign in / Sign up

Export Citation Format

Share Document