scholarly journals Copula Regression Analysis of Simultaneously Recorded Frontal Eye Field and Inferotemporal Spiking Activity during Object-Based Working Memory

2015 ◽  
Vol 35 (23) ◽  
pp. 8745-8757 ◽  
Author(s):  
M. Hu ◽  
K. L. Clark ◽  
X. Gong ◽  
B. Noudoost ◽  
M. Li ◽  
...  
2007 ◽  
Vol 97 (5) ◽  
pp. 3494-3507 ◽  
Author(s):  
Sabine Kastner ◽  
Kevin DeSimone ◽  
Christina S. Konen ◽  
Sara M. Szczepanski ◽  
Kevin S. Weiner ◽  
...  

We used fMRI at 3 Tesla and improved spatial resolution (2 × 2 × 2 mm3) to investigate topographic organization in human frontal cortex using memory-guided response tasks performed at 8 or 12 peripheral locations arranged clockwise around a central fixation point. The tasks required the location of a peripheral target to be remembered for several seconds after which the subjects either made a saccade to the remembered location (memory-guided saccade task) or judged whether a test stimulus appeared in the same or a slightly different location by button press (spatial working-memory task). With these tasks, we found two topographic maps in each hemisphere, one in the superior branch of precentral cortex and caudalmost part of the superior frontal sulcus, in the region of the human frontal eye field, and a second in the inferior branch of precentral cortex and caudalmost part of the inferior frontal sulcus, both of which greatly overlapped with activations evoked by visually guided saccades. In each map, activated voxels coded for saccade directions and memorized locations predominantly in the contralateral hemifield with neighboring saccade directions and memorized locations represented in adjacent locations of the map. Particular saccade directions or memorized locations were often represented in multiple locations of the map. The topographic activation patterns showed individual variability from subject to subject but were reproducible within subjects. Notably, only saccade-related activation, but no topographic organization, was found in the region of the human supplementary eye field in dorsomedial prefrontal cortex. Together these results show that topographic organization can be revealed outside sensory cortical areas using more complex behavioral tasks.


2007 ◽  
Vol 98 (5) ◽  
pp. 2580-2587 ◽  
Author(s):  
Jeremiah Y. Cohen ◽  
Pierre Pouget ◽  
Geoffrey F. Woodman ◽  
Chenchal R. Subraveti ◽  
Jeffrey D. Schall ◽  
...  

The frontal eye field (FEF) is involved in selecting visual targets for eye movements. To understand how populations of FEF neurons interact during target selection, we recorded activity from multiple neurons simultaneously while macaques performed two versions of a visual search task. We used a multivariate analysis in a point process statistical framework to estimate the instantaneous firing rate and compare interactions among neurons between tasks. We found that FEF neurons were engaged in more interactions during easier visual search tasks compared with harder search tasks. In particular, eye movement–related neurons were involved in more interactions than visual-related neurons. In addition, our analysis revealed a decrease in the variability of spiking activity in the FEF beginning ∼100 ms before saccade onset. The minimum in response variability occurred ∼20 ms earlier for the easier search task compared with the harder one. This difference is positively correlated with the difference in saccade reaction times for the two tasks. These findings show that a multivariate analysis can provide a measure of neuronal interactions and characterize the spiking activity of FEF neurons in the context of a population of neurons.


2017 ◽  
Vol 114 (24) ◽  
pp. 6370-6375 ◽  
Author(s):  
Naveen Sendhilnathan ◽  
Debaleena Basu ◽  
Aditya Murthy

The frontal eye field (FEF) is a key brain region to study visuomotor transformations because the primary input to FEF is visual in nature, whereas its output reflects the planning of behaviorally relevant saccadic eye movements. In this study, we used a memory-guided saccade task to temporally dissociate the visual epoch from the saccadic epoch through a delay epoch, and used the local field potential (LFP) along with simultaneously recorded spike data to study the visuomotor transformation process. We showed that visual latency of the LFP preceded spiking activity in the visual epoch, whereas spiking activity preceded LFP activity in the saccade epoch. We also found a spatially tuned elevation in gamma band activity (30–70 Hz), but not in the corresponding spiking activity, only during the delay epoch, whose activity predicted saccade reaction times and the cells’ saccade tuning. In contrast, beta band activity (13–30 Hz) showed a nonspatially selective suppression during the saccade epoch. Taken together, these results suggest that motor plans leading to saccades may be generated internally within the FEF from local activity represented by gamma activity.


2020 ◽  
Vol 14 ◽  
Author(s):  
Max Lee ◽  
Adrienne Mueller ◽  
Tirin Moore

Cognitive functions such as attention and working memory are modulated by noradrenaline receptors in the prefrontal cortex (PFC). The frontal eye field (FEF) has been shown to play an important role in visual spatial attention. However, little is known about the underlying circuitry. The aim of this study was to characterize the expression of noradrenaline receptors on different pyramidal neuron and inhibitory interneuron subtypes in macaque FEF. Using immunofluorescence, we found broad expression of noradrenaline receptors across all layers of the FEF. Differences in the expression of different noradrenaline receptors were observed across different inhibitory interneuron subtypes. No significant differences were observed in the expression of noradrenaline receptors across different pyramidal neuron subtypes. However, we found that putative long-range projecting pyramidal neurons expressed all noradrenaline receptor subtypes at a much higher proportion than any of the other neuronal subtypes. Nearly all long-range projecting pyramidal neurons expressed all types of noradrenaline receptor, suggesting that there is no receptor-specific machinery acting on these long-range projecting pyramidal neurons. This pattern of expression among long-range projecting pyramidal neurons suggests a mechanism by which noradrenergic modulation of FEF activity influences attention and working memory.


2020 ◽  
Author(s):  
Ehsan Rezayat ◽  
Mohmmad-Reza A. Dehaqani ◽  
Kelsey Clark ◽  
Zahra Bahmani ◽  
Tirin Moore ◽  
...  

AbstractNeurons in some sensory areas reflect the content of working memory (WM) in their spiking activity. However, this spiking activity is seldom related to behavioral performance. We studied the responses of inferotemporal (IT) neurons, which exhibit object-selective activity, along with Frontal Eye Field (FEF) neurons, which exhibit spatially-selective activity, during the delay period of an object WM task. Unlike the spiking activity and local field potentials (LFPs) within these areas, which were poor predictors of behavioral performance, the phase-locking of IT spikes and LFPs with the beta band of FEF LFPs robustly predicted successful WM maintenance. In addition, IT neurons exhibited greater object-selective persistent activity when their spikes were locked to the phase of FEF LFPs. These results demonstrate a key role of coordination between prefrontal and temporal cortex in the successful maintenance of visual information during WM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ehsan Rezayat ◽  
Mohammad-Reza A. Dehaqani ◽  
Kelsey Clark ◽  
Zahra Bahmani ◽  
Tirin Moore ◽  
...  

AbstractNeurons in some sensory areas reflect the content of working memory (WM) in their spiking activity. However, this spiking activity is seldom related to behavioral performance. We studied the responses of inferotemporal (IT) neurons, which exhibit object-selective activity, along with Frontal Eye Field (FEF) neurons, which exhibit spatially selective activity, during the delay period of an object WM task. Unlike the spiking activity and local field potentials (LFPs) within these areas, which were poor predictors of behavioral performance, the phase-locking of IT spikes and LFPs with the beta band of FEF LFPs robustly predicted successful WM maintenance. In addition, IT neurons exhibited greater object-selective persistent activity when their spikes were locked to the phase of FEF LFPs. These results reveal that the coordination between prefrontal and temporal cortex predicts the successful maintenance of visual information during WM.


Author(s):  
Kaleb A. Lowe ◽  
Wolf Zinke ◽  
M. Anthony Phipps ◽  
Josh Cosman ◽  
Micala Maddox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document