Hydrogen bond network of the layered phosphates γ-Zr(H2PO4)(PO4)⋅2H2O and γ-Hf(H2PO4)(PO4)⋅2H2O determined by neutron powder diffraction

Author(s):  
M.A. Salvadó ◽  
P. Pertierra ◽  
S. García-Granda ◽  
L. M. Barcina ◽  
R. Llavona ◽  
...  

AbstractThe hydrogen atom positions of the layered phosphates Zr(PO

2017 ◽  
Vol 50 (2) ◽  
pp. 340-348
Author(s):  
Helen E. A. Brand ◽  
Nicola V. Y. Scarlett ◽  
Kevin S. Knight

A combination of time-of-flight neutron diffraction and synchrotron X-ray powder diffraction has been used to investigate the thermal expansion of a synthetic deuterated natrojarosite from 80 to 440 K under ambient-pressure conditions. The variation in unit-cell volume for monoclinic jarosite over this temperature range can be well represented by an Einstein expression of the form V = 515.308 (5) + 8.5 (4)/{exp[319 (4)/T] − 1}. Analysis of the behaviour of the polyhedra and hydrogen-bond network suggests that the strength of the hydrogen bonds connected to the sulfate tetrahedra is instrumental in determining the expansion of the structure, which manifests primarily in the c-axis direction.


2012 ◽  
Vol 27 (1) ◽  
pp. 8-11 ◽  
Author(s):  
A. Dominic Fortes ◽  
Ian G. Wood

A new hydrate of magnesium chromate is synthesized by quenching aqueous solutions of MgCrO4 in liquid nitrogen. MgCrO4·11H2O is isostructural with the rare mineral meridianiite (MgSO4·11H2O) being triclinic, $P{\bar 1}$, Z = 2, with unit-cell parameters a = 6.811 33(8) Å, b = 6.958 39(9) Å, c = 17.3850(2) Å, α = 87.920(1)°, β = 89.480(1)°, γ = 62.772(1)°, and V = 732.17(1) Å3 at −15 °C. The difference in unit-cell parameters between SO4- and CrO4-bearing species is only partially accounted for by the difference in S–O and Cr–O bond lengths; the remainder of the difference (over 90% in the cell volume) is attributed to weakening of the interpolyhedral hydrogen-bond network.


2021 ◽  
pp. 120431
Author(s):  
Akinori Honda ◽  
Shunta Kakihara ◽  
Shuhei Ichimura ◽  
Kazuaki Tomono ◽  
Mina Matsushita ◽  
...  

2021 ◽  
pp. 1-7
Author(s):  
Nilan V. Patel ◽  
Joseph T. Golab ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tamsulosin hydrochloride has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Tamsulosin hydrochloride crystallizes in space group P21 (#4) with a = 7.62988(2), b = 9.27652(2), c = 31.84996(12) Å, β = 93.2221(2)°, V = 2250.734(7) Å3, and Z = 4. In the crystal structure, two arene rings are connected by a carbon chain oriented roughly parallel to the c-axis. The crystal structure is characterized by two slabs of tamsulosin hydrochloride molecules perpendicular to the c-axis. As expected, each of the hydrogens on the protonated nitrogen atoms makes a strong hydrogen bond to one of the chloride anions. The result is to link the cations and anions into columns along the b-axis. One hydrogen atom of each sulfonamide group also makes a hydrogen bond to a chloride anion. The other hydrogen atom of each sulfonamide group forms bifurcated hydrogen bonds to two ether oxygen atoms. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1415.


2021 ◽  
Author(s):  
Xiang-Yang Liu ◽  
Teng-Shuo Zhang ◽  
Qiu Fang ◽  
Wei-Hai Fang ◽  
Leticia González ◽  
...  

2004 ◽  
Vol 60 (1) ◽  
pp. 90-96 ◽  
Author(s):  
Biserka Kojić-Prodić ◽  
Berislav Perić ◽  
Zoran Štefanić ◽  
Anton Meden ◽  
Janja Makarević ◽  
...  

To compare the structural properties of oxalamide and thiooxalamide groups in the formation of hydrogen bonds suitable for supramolecular assemblies a series of retropeptides was studied. Some of them, having oxalamide bridges, are gelators of organic solvents and water. However, retropeptides with oxygen replaced by the sp 2 sulfur have not exhibited such properties. The crystal structures of the two title compounds are homostructural, i.e. they have similar packing arrangements. The monothio compound crystallizes in the orthorhombic space group P212121 with two molecules in the asymmetric unit arranged in a hydrogen-bond network with an approximate 41 axis along the crystallographic b axis. However, the dithio and dioxo analogues crystallize in the tetragonal space group P41 with similar packing patterns and hydrogen-bonding systems arranged in agreement with a crystallographic 41 axis. Thus, these two analogues are isostructural having closely related hydrogen-bonding patterns in spite of the different size and polarity of oxygen and sulfur which serve as the proton acceptors.


Sign in / Sign up

Export Citation Format

Share Document