Quantum Chemistry.

1958 ◽  
Vol 17 (3_4) ◽  
pp. 279-280
Author(s):  
Th. Förster
Keyword(s):  
1975 ◽  
Vol 95 (4-6) ◽  
pp. 318-319
Author(s):  
W. A. Bingel
Keyword(s):  

2000 ◽  
Author(s):  
Vassiliki-Alexandra Glezakou
Keyword(s):  

1986 ◽  
Vol 51 (4) ◽  
pp. 731-737
Author(s):  
Viliam Klimo ◽  
Jozef Tiňo

Geometry and energy parameters of the individual dissociation intermediate steps of CH4 molecule, parameters of the barrier to linearity and singlet-triplet separation of the CH2 molecule have been calculated by means of the UMP method in the minimum basis set augmented with the bond functions. The results agree well with experimental data except for the geometry of CH2(1A1) and relatively high energy values of CH(2II) and CH2(1A1) where the existence of two UHF solutions indicates a necessity of description of the electronic correlation by more exact methods of quantum chemistry.


1995 ◽  
Vol 60 (4) ◽  
pp. 527-536 ◽  
Author(s):  
Martin Breza ◽  
Alena Manová

Using semiempirical MNDO method of quantum chemistry the optimal geometries and corresponding electronic structures of [Pb3(OH)n]6-n model systems as well as of their hydrated [Pb3(OH)n(H2O)8-n]6-n analogues (n = 4, 5) are investigated. The most stable trinuclear lead(II) complexes present in aqueous solutions correspond to cyclo-(μ3-OH)(μ2-OH)3Pb32+, Pb(μ-OH)2Pb(μ-OH)2Pb2+, cyclo-(μ3-OH)2(μ2-OH)3Pb3+, Pb(OH)(μ-OH)2Pb(μ-OH)Pb(OH)+ and Pb(OH)(μ-OH)2Pb(μ-OH)2Pb+ systems. The key role of OH bridges (by vanishing direct Pb-Pb bonds) on the stability of individual isomers is discussed.


2008 ◽  
Vol 73 (10) ◽  
pp. 1340-1356 ◽  
Author(s):  
Katarína Mečiarová ◽  
Laurent Cantrel ◽  
Ivan Černušák

This paper focuses on the reactivity of iodine which is the most critical radioactive contaminant with potential short-term radiological consequences to the environment. The radiological risk assessments of 131I volatile fission products rely on studies of the vapour-phase chemical reactions proceeding in the reactor coolant system (RCS), whose function is transferring the energy from the reactor core to a secondary pressurised water line via the steam generator. Iodine is a fission product of major importance in any reactor accident because numerous volatile iodine species exist under reactor containment conditions. In this work, the comparison of the thermodynamic data obtained from the experimental measurements and theoretical calculations (approaching "chemical accuracy") is presented. Ab initio quantum chemistry methods, combined with a standard statistical-thermodynamical treatment and followed by inclusion of small energetic corrections (approximating full configuration interaction and spin-orbit effects) are used to calculate the spectroscopic and thermodynamic properties of molecules containing atoms H, O and I. The set of molecules and reactions serves as a benchmark for future studies. The results for this training set are compared with reference values coming from an established thermodynamic database. The computed results are promising enough to go on performing ab initio calculations in order to predict thermo-kinetic parameters of other reactions involving iodine-containing species.


Author(s):  
Kenneth G. Dyall ◽  
Knut Faegri

This book provides an introduction to the essentials of relativistic effects in quantum chemistry, and a reference work that collects all the major developments in this field. It is designed for the graduate student and the computational chemist with a good background in nonrelativistic theory. In addition to explaining the necessary theory in detail, at a level that the non-expert and the student should readily be able to follow, the book discusses the implementation of the theory and practicalities of its use in calculations. After a brief introduction to classical relativity and electromagnetism, the Dirac equation is presented, and its symmetry, atomic solutions, and interpretation are explored. Four-component molecular methods are then developed: self-consistent field theory and the use of basis sets, double-group and time-reversal symmetry, correlation methods, molecular properties, and an overview of relativistic density functional theory. The emphases in this section are on the basics of relativistic theory and how relativistic theory differs from nonrelativistic theory. Approximate methods are treated next, starting with spin separation in the Dirac equation, and proceeding to the Foldy-Wouthuysen, Douglas-Kroll, and related transformations, Breit-Pauli and direct perturbation theory, regular approximations, matrix approximations, and pseudopotential and model potential methods. For each of these approximations, one-electron operators and many-electron methods are developed, spin-free and spin-orbit operators are presented, and the calculation of electric and magnetic properties is discussed. The treatment of spin-orbit effects with correlation rounds off the presentation of approximate methods. The book concludes with a discussion of the qualitative changes in the picture of structure and bonding that arise from the inclusion of relativity.


Sign in / Sign up

Export Citation Format

Share Document