Implementation of LED control system based on Zigbee network for energy-saving

2018 ◽  
pp. 143-149 ◽  
Author(s):  
Ruijie CHENG

In order to further improve the energy efficiency of classroom lighting, a classroom lighting energy saving control system based on machine vision technology is proposed. Firstly, according to the characteristics of machine vision design technology, a quantum image storage model algorithm is proposed, and the Back Propagation neural network algorithm is used to analyze the technology, and a multi­feedback model for energy­saving control of classroom lighting is constructed. Finally, the algorithm and lighting model are simulated. The test results show that the design of this paper can achieve the optimization of the classroom lighting control system, different number of signals can comprehensively control the light and dark degree of the classroom lights, reduce the waste of resources of classroom lighting, and achieve the purpose of energy saving and emission reduction. Technology is worth further popularizing in practice.


Author(s):  
Branislav Ftorek ◽  
Milan Saga ◽  
Pavol Orsansky ◽  
Jan Vittek ◽  
Peter Butko

Purpose The main purpose of this paper is to evaluate the two energy saving position control strategies for AC drives valid for a wide range of boundary conditions including an analysis of their energy expenses. Design/methodology/approach For energy demands analysis, the optimal energy control based on mechanical and electrical losses minimization is compared with the near-optimal one based on symmetrical trapezoidal speed profile. Both control strategies respect prescribed maneuver time and define acceleration profile for preplanned rest-to-rest maneuver. Findings Presented simulations confirm lower total energy expenditures of energy optimal control if compared with near-optimal one, but the differences are only small due to the fact that two energy saving strategies are compared. Research limitations/implications Developed overall control system consisting of energy saving profile generator, pre-compensator and position control system respecting principles of field-oriented control is capable to track precomputed state variables precisely. Practical implications Energy demands of both control strategies are verified and compared to simulations and preliminary experiments. The possibilities of energy savings were confirmed for both control strategies. Originality/value Experimental verification of designed control structure is sufficiently promising and confirmed assumed energy savings.


Author(s):  
A.A. Ashryatov ◽  
V.G. Kulikov ◽  
A.V. Panteleyev

<p>Currently, energy saving requires the development of simple and efficient street lighting control systems. In order to create such a control system, it is necessary to develop an original principle of its operation. They considered the advantages of electronic starting devices in street lighting control systems. They performed the analysis of the existing state of street lighting means, their shortcomings and solutions have been determined, and they developed the method of lighting device automatic control. They performed the assessment of the economic effect from loss reduction associated with reactive power and due to power reduction during deep night. They presented the example of economic effect achievement from the use of an electronic starting device with automatic power reduction.</p>


Sign in / Sign up

Export Citation Format

Share Document