Performance of Chaotic CDMA System implemented on Software-Defined Radio System

2014 ◽  
Vol 1 ◽  
pp. 662-665
Author(s):  
Hisashi Watanabe ◽  
Yuichi Omori ◽  
Mikio Hasegawa ◽  
Kazuyuki Aihara
Author(s):  
Е.О. КАНДАУРОВА ◽  
Д.С. ЧИРОВ

Представлено описание разработанных программных модулей интеллектуальной перестройки рабочих частот для системы когнитивного радио, в которых применяется ранее предложенный алгоритм анализа использования радиочастотного спектра. Также разработаны программные модули для взаимодействия с программно-определяемыми радиосистемами, такими как LimeSDR. Экспериментально показано, что использование алгоритма предсказания занятости частотных каналов позволяет сократить время оперативного сканирования спектра. A description of the developed software modules for intelligent tuning of operating frequencies for the cognitive radio system is presented. These software modules use the previously proposed algorithm of RF spectrum utilization analysis. Also, software modules have been developed for interacting with software-defined radio such as LimeSDR. Experimental studies have shown that the use of an algorithm for predicting the occupancy of frequency channels allows reducing the time of operational scanning of the spectrum.


2018 ◽  
Vol 246 ◽  
pp. 03005
Author(s):  
Fu Xiao ◽  
Li-ming Xiao

This paper proposes a hardware platform for WCDMA baseband data transmission, which consists of USB3.0 interface, general purposes processor (GPP), and software defined radio (SDR) system. In view of the requirements of WCDMA system, the hardware platform consisting of USB3.0 controller, FPGA and DDRII was selected, which finally realized the high throughput rate and low delay transmission of baseband data of WCDMA system. The experimental results show that in this GPP software defined radio system, the interface speed of USB3.0 can reach 200MBps, and the loopback delay time of the system is about 0.7ms, which can meet the requirements of WCDMA system.


Author(s):  
Michael Inggs ◽  
Gordon Inggs ◽  
Alan Langman ◽  
Simon Scott

2008 ◽  
Vol 7 (6) ◽  
pp. 2170-2179 ◽  
Author(s):  
Giovanni Vannucci ◽  
Aggelos Bletsas ◽  
Darren Leigh

Author(s):  
Oleg V. Vorobyov ◽  
Alexey I. Rybakov

Introduction. The demodulator structure is described and decoding algorithm for signal-code constructions development is presented. The structure and functional description of the developed software (SW), which is designed for the installation of the software-defined radio in the radio stations layout, are presented. The frame structures of the broadcast and half-duplex protocols, modulation/demodulation and subsequent digital signal processing in existing and prospect radio communication systems are considered.Objective. Investigation of modulation/demodulation methods and subsequent digital signal processing along with requirements imposed by them on the network stations equipment and system operation algorithms.Materials and methods. The software for the software-defined radio system layout is developed to demonstrate the reliability and operability of the proposed algorithm and transmission protocol. It can be used to receive and transmit information by using ionospheric reflections. Present design takes into account existing standards and amateur systems such as WinLink and information systems (digital and analog) for the "physical" and "channel" levels.Results. The structure and functional description of the developed software for the software-defined radio system layout are given. The possible realization of the software-defined radio channel for data receiving and transfer by using ionospheric reflections is presented. The results of technical solutions experimental testing are shown. The software can use hardware and software to control the transceiver module, which includes the SunSDR2 transceiver and antenna amplifier.Conclusion. The structure and functional description of the developed software are presented as a result of the software architecture selection and its application investigation. It is concluded that the reliability and operability justification of the proposed algorithm and transmission protocol is relevant in a field of the digital receivers development for communication systems of various purposes. The presented experimental studies data on verification of the proposed algorithm show the feasibility of present solutions on the qualitative utilization of the channel resource by using the described code structure. The present results allow to determine the most appropriate and efficient way of the software development allowing to create a technique that can meet the maximum number of possible assignments of radio access channels.


Author(s):  
Verica Marinković-Nedelicki ◽  
Branislav Pavić ◽  
Jovan Radivojević ◽  
Predrag Petrović ◽  
Aleksandar Lebl

The radio system for high frequency spectrum monitoring and signal processing used in direction finding is presented in this paper. This main function is realized using 6-channel HF radio signal receiver. The high degree of flexibility is achieved by the application of antenna multicoupler unit which allows that signals from several antennas may be processed in the system. The system signal processing especially in the demodulator is based on the most modern components of software defined radio. The system is completely developed in the Institute IRITEL applying commercial components wherever such an approach may fulfill the expected performances. The realized development is highly multidisciplinary and specific, especially HF radio signal receiver and the structure of its modules (local oscillator, RF/IF receiver subsystem, demodulator and control block) which is presented in the paper in more details. User handling is simple over intuitive user interface and system functional parameters may be easily changed. Special attention in the paper is devoted to this interface and software control procedures. The designed electrical characteristics are verified by comprehensive set of measurements according to military specifications both for HF radio signal receiver and antenna multicoupler unit and these characteristics are illustrated by several examples. The system is approved for the application in real conditions.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 626 ◽  
Author(s):  
Ernesto Cadena Muñoz ◽  
Luis Fernando Pedraza Martínez ◽  
Cesar Augusto Hernandez

A very important task in Mobile Cognitive Radio Networks (MCRN) is to ensure that the system releases a given frequency when a Primary User (PU) is present, by maintaining the principle to not interfere with its activity within a cognitive radio system. Afterwards, a cognitive protocol must be set in order to change to another frequency channel that is available or shut down the service if there are no free channels to be found. The system must sense the frequency spectrum constantly through the energy detection method which is the most commonly used. However, this analysis takes place in the time domain and signals cannot be easily identified due to changes in modulation, power and distance from mobile users. The proposed system works with Gaussian Minimum Shift Keying (GMSK) and Orthogonal Frequency Division Multiplexing (OFDM) for systems from Global System for Mobile Communication (GSM) to 5G systems, the signals are analyzed in the frequency domain and the Rényi-Entropy method is used as a tool to distinguish the noise and the PU signal without prior knowledge of its features. The main contribution of this research is that uses a Software Defined Radio (SDR) system to implement a MCRN in order to measure the behavior of Primary and Secondary signals in both time and frequency using GNURadio and OpenBTS as software tools to allow a phone call service between two Secondary Users (SU). This allows to extract experimental results that are compared with simulations and theory using Rényi-entropy to detect signals from SU in GMSK and OFDM systems. It is concluded that the Rényi-Entropy detector has a higher performance than the conventional energy detector in the Additive White Gaussian Noise (AWGN) and Rayleigh channels. The system increases the detection probability (PD) to over 96% with a Signal to Noise Ratio (SNR) of 10dB and starting 5 dB below energy sensing levels.


Sign in / Sign up

Export Citation Format

Share Document