Invariance Groups in Classical and Quantum Mechanics

1973 ◽  
Vol 28 (3-4) ◽  
pp. 538-540 ◽  
Author(s):  
D. J. Simms

AbstractThis is a report on some new relations and analogies between classical mechanics and quantum mechanics which arise out of the work of Kostant and Souriau. Topics treated are i) the role of symmetry groups; ii) the notion of elementary system and the role of Casimir invariants; iii) energy levels; iv) quantisation in terms of geometric data on the classical phase space. Some applications are described.

2005 ◽  
Vol 02 (04) ◽  
pp. 633-655
Author(s):  
JOSÉ M. ISIDRO

Duality transformations within the quantum mechanics of a finite number of degrees of freedom can be regarded as the dependence of the notion of a quantum, i.e., an elementary excitation of the vacuum, on the observer on classical phase space. Under an observer we understand, as in general relativity, a local coordinate chart. While classical mechanics can be formulated using a symplectic structure on classical phase space, quantum mechanics requires a complex-differentiable structure on that same space. Complex-differentiable structures on a given real manifold are often not unique. This article is devoted to analysing the dependence of the notion of a quantum on the complex-differentiable structure chosen on classical phase space. For that purpose we consider Kähler phase spaces, endowed with a dynamics whose Hamiltonian equals the local Kähler potential.


2005 ◽  
Vol 20 (12) ◽  
pp. 869-874
Author(s):  
JOSÉ M. ISIDRO

Classical mechanics can be formulated using a symplectic structure on classical phase space, while quantum mechanics requires a complex-differentiable structure on that same space. Complex-differentiable structures on a given real manifold are often not unique. This paper is devoted to analysing the dependence of the notion of a quantum on the complex-differentiable structure chosen on classical phase space.


2004 ◽  
Vol 19 (23) ◽  
pp. 1733-1744 ◽  
Author(s):  
JOSÉ M. ISIDRO

On classical phase spaces admitting just one complex-differentiable structure, there is no indeterminacy in the choice of the creation operators that create quanta out of a given vacuum. In these cases the notion of a quantum is universal, i.e. independent of the observer on classical phase space. Such is the case in all standard applications of quantum mechanics. However, recent developments suggest that the notion of a quantum may not be universal. Transformations between observers that do not agree on the notion of an elementary quantum are called dualities. Classical phase spaces admitting more than one complex-differentiable structure thus provide a natural framework to study dualities in quantum mechanics. As an example we quantise a classical mechanics whose phase space is a torus and prove explicitly that it exhibits dualities.


10.14311/1414 ◽  
2011 ◽  
Vol 51 (4) ◽  
Author(s):  
R. J. Rivers

An analysis of classical mechanics in a complex extension of phase space shows that a particle in such a space can behave in a way redolent of quantum mechanics; additional dimensions permit ‘tunnelling’ without recourse to instantons and time/energy uncertainties exist. In practice, ‘classical’ particle trajectories with additional degrees of freedom arise in several different formulations of quantum mechanics. In this talk we compare the extended phase space of the closed time-path formalism with that of complex classical mechanics, to suggest that ℏ has a role in our understanding of the latter. However, differences in the way that trajectories are used make a deeper comparison problematical. We conclude with some thoughts on quantisation as dimensional reduction.


2015 ◽  
Vol 45 (5) ◽  
pp. 641-702 ◽  
Author(s):  
Jeremiah James ◽  
Christian Joas

As part of an attempt to establish a new understanding of the earliest applications of quantum mechanics and their importance to the overall development of quantum theory, this paper reexamines the role of research on molecular structure in the transition from the so-called old quantum theory to quantum mechanics and in the two years immediately following this shift (1926–1928). We argue on two bases against the common tendency to marginalize the contribution of these researches. First, because these applications addressed issues of longstanding interest to physicists, which they hoped, if not expected, a complete quantum theory to address, and for which they had already developed methods under the old quantum theory that would remain valid under the new mechanics. Second, because generating these applications was one of, if not the, principal means by which physicists clarified the unity, generality, and physical meaning of quantum mechanics, thereby reworking the theory into its now commonly recognized form, as well as developing an understanding of the kinds of predictions it generated and the ways in which these differed from those of the earlier classical mechanics. More broadly, we hope with this article to provide a new viewpoint on the importance of problem solving to scientific research and theory construction, one that might complement recent work on its role in science pedagogy.


2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
So Katagiri

Abstract We investigate measurement theory in classical mechanics in the formulation of classical mechanics by Koopman and von Neumann (KvN), which uses Hilbert space. We show a difference between classical and quantum mechanics in the “relative interpretation” of the state of the target of measurement and the state of the measurement device. We also derive the uncertainty relation in classical mechanics.


2006 ◽  
Vol 13 (01) ◽  
pp. 67-74 ◽  
Author(s):  
Dariusz Chruściński

We propose a new formula for the adiabatic Berry phase which is based on phase-space formulation of quantum mechanics. This approach sheds a new light onto the correspondence between classical and quantum adiabatic phases — both phases are related with the averaging procedure: Hannay angle with averaging over the classical torus and Berry phase with averaging over the entire classical phase space with respect to the corresponding Wigner function.


Author(s):  
M. Springborg ◽  
J. P. Perdew ◽  
K. Schmidt

In the general case, quantum-mechanical quantities are represented by operators in position- or momentum-space representations, but in phase space they are represented by functions. The correspondence between classical mechanics and quantum mechanics is non-unique as a consequence of [


1980 ◽  
Vol 58 (8) ◽  
pp. 1171-1182 ◽  
Author(s):  
R. E. Turner ◽  
R. F. Snider

It is shown how differential cross sections can be obtained from the time dependence of phase space packets. This procedure is valid both for classical and quantum mechanics. Two methods are described. In one the trajectory of the packet is emphasized, while in the second the packet is appropriately spread to infinite size. Both methods are applicable to either mechanics. It is shown how the quantal results agree with those of the stationary state approach as formulated in terms of the density operator. The description is also used to elucidate the difference between the scattered flux and the generalized flux that arises naturally in the superoperator formulation.


Sign in / Sign up

Export Citation Format

Share Document