PREDICTING CERIUM + H2O CLUSTER FORMATION WITH SIMULATED AND EXPERIMENTAL SPECTROSCOPY

Author(s):  
Josey Topolski ◽  
Caroline Chick Jarrold ◽  
Manisha Ray ◽  
Jared Kafader
2020 ◽  
Author(s):  
Christoph Buttersack

<p>Adsorption isotherms are an essential tool in chemical physics of surfaces. However, several approaches based on a different theoretical basis exist and for isotherms including capillary condensation existing approaches can fail. Here, a general isotherm equation is derived and applied to literature data both concerning type IV isotherms of argon and nitrogen in ordered mesoporous silica, and type II isotherms of disordered macroporous silica. The new isotherm covers the full range of partial pressure (10<sup>-6</sup> - 0.7). It relies firstly on the classical thermodynamics of cluster formation, secondly on a relationship defining the free energy during the increase of the cluster size. That equation replaces the Lennard-Jones potentials used in the classical density functional theory. The determination of surface areas is not possible by this isotherm because the cross-sectional area of a cluster is unknown. Based on the full description of type IV isotherms, most known isotherms are accessible by respective simplifications. </p>


Author(s):  
Amandeep Kaur Sohal ◽  
Ajay Kumar Sharma ◽  
Neetu Sood

Background: An information gathering is a typical and important task in agriculture monitoring and military surveillance. In these applications, minimization of energy consumption and maximization of network lifetime have prime importance for green computing. As wireless sensor networks comprise of a large number of sensors with limited battery power and deployed at remote geographical locations for monitoring physical events, therefore it is imperative to have minimum consumption of energy during network coverage. The WSNs help in accurate monitoring of remote environment by collecting data intelligently from the individual sensors. Objective: The paper is motivated from green computing aspect of wireless sensor network and an Energy-efficient Weight-based Coverage Enhancing protocol using Genetic Algorithm (WCEGA) is presented. The WCEGA is designed to achieve continuously monitoring of remote areas for a longer time with least power consumption. Method: The cluster-based algorithm consists two phases: cluster formation and data transmission. In cluster formation, selection of cluster heads and cluster members areas based on energy and coverage efficient parameters. The governing parameters are residual energy, overlapping degree, node density and neighbor’s degree. The data transmission between CHs and sink is based on well-known evolution search algorithm i.e. Genetic Algorithm. Conclusion: The results of WCEGA are compared with other established protocols and shows significant improvement of full coverage and lifetime approximately 40% and 45% respectively.


1993 ◽  
Vol 58 (10) ◽  
pp. 2266-2271 ◽  
Author(s):  
Herbert Morawetz

Recent studies of polymers in solution and in bulk by energy transfer between two fluorescent labels are reviewed. Such studies are concerned with the equilibrium and dynamics of polymer chain expansion, molecular cluster formation in solution, the miscibility of polymers in bulk, and the interdiffusion of polymer latex particles.


Author(s):  
Claudia Zucchi ◽  
Manuela Mattioli ◽  
Giovanna Gavioli ◽  
Massimo Moret ◽  
Angelo Sironi ◽  
...  

2020 ◽  
Vol 496 (1) ◽  
pp. 638-648 ◽  
Author(s):  
Timo L R Halbesma ◽  
Robert J J Grand ◽  
Facundo A Gómez ◽  
Federico Marinacci ◽  
Rüdiger Pakmor ◽  
...  

ABSTRACT We investigate whether the galaxy and star formation model used for the Auriga simulations can produce a realistic globular cluster (GC) population. We compare statistics of GC candidate star particles in the Auriga haloes with catalogues of the Milky Way (MW) and Andromeda (M31) GC populations. We find that the Auriga simulations do produce sufficient stellar mass for GC candidates at radii and metallicities that are typical for the MW GC system (GCS). We also find varying mass ratios of the simulated GC candidates relative to the observed mass in the MW and M31 GCSs for different bins of galactocentric radius metallicity (rgal–[Fe/H]). Overall, the Auriga simulations produce GC candidates with higher metallicities than the MW and M31 GCS and they are found at larger radii than observed. The Auriga simulations would require bound cluster formation efficiencies higher than 10 per cent for the metal-poor GC candidates, and those within the Solar radius should experience negligible destruction rates to be consistent with observations. GC candidates in the outer halo, on the other hand, should either have low formation efficiencies, or experience high mass-loss for the Auriga simulations to produce a GCS that is consistent with that of the MW or M31. Finally, the scatter in the metallicity as well as in the radial distribution between different Auriga runs is considerably smaller than the differences between that of the MW and M31 GCSs. The Auriga model is unlikely to give rise to a GCS that can be consistent with both galaxies.


Sign in / Sign up

Export Citation Format

Share Document