UNDERSTANDING QUANTUM YIELDS IN NAPHTHALENES AND BORON-DIPYRROMETHENES: TOWARDS A PREDICTION OF NON-RADIATIVE DECAY PATHWAYS IN ORGANIC OPTOELECTRONIC MATERIALS

Author(s):  
Zhou Lin ◽  
Troy Van Voorhis ◽  
Alexander Kohn
2019 ◽  
Vol 43 (41) ◽  
pp. 16411-16420 ◽  
Author(s):  
Xiaohua Wang ◽  
Bin Jiang ◽  
Chenchen Du ◽  
Xiaolei Ren ◽  
Zhiming Duan ◽  
...  

The synthesis of monofluorinated and difluorinated dithienyl-DPP was reported using a stepwise synthesis method starting from the preparation of pyrrolinone followed by condensation with methyl thiophene-2-carbimidate derivatives.


2019 ◽  
Vol 6 (12) ◽  
pp. 1948-1954 ◽  
Author(s):  
Junqing Shi ◽  
Maria A. Izquierdo ◽  
Sangyoon Oh ◽  
Soo Young Park ◽  
Begoña Milián-Medina ◽  
...  

The non-radiative decay of substituted dicyano-distyrylbenzenes in solution increase with the Franck–Condon energy, being opposite to the conventional energy gap law.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2434 ◽  
Author(s):  
Sándor Lajos Kovács ◽  
Miklós Nagy ◽  
Péter Pál Fehér ◽  
Miklós Zsuga ◽  
Sándor Kéki

The properties of 1,4-isocyanoaminonaphthalene (1,4-ICAN) and 2,6-isocyanoaminonaphthalene (2,6-ICAN) isomers are discussed in comparison with those of 1,5-isocyanoaminonaphthalene (1,5-ICAN), which exhibits a large positive solvatochromic shift similar to that of Prodan. In these isocyanoaminonaphthalene derivatives, the isocyano and the amine group serve as the donor and acceptor moieties, respectively. It was found that the positions of the donor and the acceptor groups in these naphthalene derivatives greatly influence the Stokes and solvatochromic shifts, which decrease in the following order: 1,5-ICAN > 2,6-ICAN > 1,4-ICAN. According to high-level quantum chemical calculations, this order is well correlated with the charge transfer character of these compounds upon excitation. Furthermore, unlike 1,5-ICAN, the 1,4-ICAN and 2,6-ICAN isomers showed relatively high quantum yields in water, that were determined to be 0.62 and 0.21, respectively. In addition, time-resolved fluorescence experiments revealed that both the radiative and non-radiative decay rates for these three ICAN isomers varied unusually with the solvent polarity parameter ET(30). The explanations of the influence of the solvent polarity on the resulting steady-state and time-resolved fluorescence emission spectra are also discussed.


2020 ◽  
Vol 16 ◽  
pp. 530-536 ◽  
Author(s):  
Anping Luo ◽  
Min Zhang ◽  
Zhangyi Fu ◽  
Jingbo Lan ◽  
Di Wu ◽  
...  

The regioselective C–H arylation of substituted polycyclic aromatic hydrocarbons (PAHs) is a desired but challenging task. A copper-catalyzed C7–H arylation of 1-naphthamides has been developed by using aryliodonium salts as arylating reagents. This protocol does not need to use precious metal catalysts and tolerates wide variety of functional groups. Under standard conditions, the remote C–H arylation of other PAHs including phenanthrene-9-carboxamide, pyrene-1-carboxamide and fluoranthene-3-carboxamide has also accomplished, which provides an opportunity for the development of diverse organic optoelectronic materials.


Author(s):  
GARY A. BAKER ◽  
FRANK V. BRIGHT ◽  
MICHAEL R. DETTY ◽  
SIDDHARTH PANDEY ◽  
COREY E. STILTS ◽  
...  

Series of 5,10,15,20-tetraarylporphyrins 1 and 5,10,15,20-tetrakis[4-(arylethynyl)phenyl]porphyrins 2 were prepared via condensation of pyrrole with the appropriate benzaldehyde or 4-(arylethynyl)benzaldehyde derivative (3). Condensation of meso-phenyldipyrromethane with mixtures of benzaldehyde and 4-(trimethylsilyl-ethynyl)benzaldehyde gave a separable mixture of mono- (6), bis- (both cis-7 and trans-8) and tris[4-(trimethylsilylethynyl)phenyl]porphyrin (9). Following removal of the trimethylsilyl groups of 6–9, the 4-ethynylphenyl groups of 11–14 were coupled to 1-iodo-3,5-di(trifluoromethyl)benzene with Pd ( OAc )2 to give 15–18 bearing one, two (both cis- and trans-) and three 4-[bis-3,5-(trifluoromethyl)phenylethynyl]phenyl groups respectively. Coupling of 11 and 1-iodo-4-nitrobenzene with Pd ( OAc )2 gave porphyrin 19 with one 4-(4-nitrophenylethynyl)phenyl group. Porphyrin 24 with a p-quinone linked to the porphyrin core via a phenylethynyl group was prepared via similar chemistry. The absorbance spectra, emission maxima, excited-state fluorescence lifetimes, quantum yields of fluorescence, rates of fluorescence and rates of non-radiative decay were measured for each of the porphyrins. Absorbance spectra and emission maxima were nearly identical for all the porphyrins of this study, which suggests that the aryl groups and 4-(arylethynyl)phenyl groups are not strongly coupled to the porphyrin core in these metal-free compounds. Fluorescence quantum yields and rates of radiative decay were larger for porphyrins bearing 4-(arylethynyl)phenyl groups, while excited-state fluorescence lifetimes were somewhat shorter. These effects were additive for each additional 4-(arylethynyl)phenyl group.


2017 ◽  
Vol 5 (22) ◽  
pp. 5283-5298 ◽  
Author(s):  
Zibiao Li ◽  
Junhua Kong ◽  
FuKe Wang ◽  
Chaobin He

Due to the unique hybrid structures and physical properties of polyhedral oligomeric silsesquioxanes (POSSs), hybridation with POSS has been demonstrated to be an important approach to build high-performance organic optoelectronic materials for applications in organic light-emitting diodes (OLEDs), liquid crystal display, sensors and electrochromic devices.


Sign in / Sign up

Export Citation Format

Share Document