Mechanical properties evaluation for engineering materials utilizing instrumented indentation: Finite element modelling approach

2021 ◽  
Vol 15 (1) ◽  
pp. 7671-7683
Author(s):  
Ahmed F. Elmisteri ◽  
Farag M. Shuaeib ◽  
Abdelbaset R. H. Midawi

Instrumented indentation technique gives the possibility to determine the mechanical properties for small specimens and material in service. Several researchers have attempted to evaluate this approach experimentally and investigated the factors that affect it by using different indenter’s geometries for different engineering materials. In this work, the instrumented indentation technique was used to evaluate the mechanical properties experimentally and numerically using finite element simulation to understand the contact mechanics between the indenter surface and the substrate for two types of steel alloys namely ASTM516-G70 and AISI1010 steel. Two shapes of indenters, blunt (spherical) and sharp (Vickers) were used. The results were then compared with the experimental results extracted from the instrumented indentation test. The results have demonstrated a good agreement between the experimental and the finite element simulation results with error bound a ±5 % for young’s modulus and ±7.7 % for yield strength. Whereas excellent agreement is observed in the elastic region and the beginning of the plastic region for the true stress-strain curve. Finally, it is to be emphasized that the obtained results are more applicable for the tested materials and further research is recommended to accommodate other materials as well and to confirm the generality of this method.

2019 ◽  
Vol 34 (3) ◽  
pp. 117-129
Author(s):  
Ahmed. F. Elmisteri ◽  
Abdelbaset R. H. Midawi ◽  
Farag M Shuaeib

Instrumented indentation technique at micro-scales has become more popular to determine mechanical properties of materials like hardness, modulus of elasticity, and yield strength. It is introduced as a method that finds the stress-strain curve, instead of the traditional tensile test. Furthermore, it gives a possibility to determine the mechanical properties for small specimens and material under operation in the field. Several researchers have attempted to evaluate this method experimentally and to investigate the factors affecting it by using a different shape of indenters, and different types of materials. In the same regard, this research work is conducted to evaluate this method experimentally and by finite element simulation methods. Two types of industrially significant steels were selected; they are namely ASTM516-G70, AISI1010 steel; and two shapes of indenters, blunt and sharp (Spherical, and Vickers) were used. The finite element simulation has been performed by ABAQUS simulation program, and its results were then compared with the experimental test results obtained from Nanovea instrumented indentation test machine. The results obtained have demonstrated good agreement between the experimental and the finite element simulation results within 5 % difference for young’s module, and 7.7 % for yield strength whereas excellent agreement is observed in the elastic region and the beginning of the plastic region for the engineering stress-strain curve. Finally, it is to be emphasized that the obtained results are more applicable for the tested materials, and further research is recommended to accommodate other materials as well and to confirm the generality of this method.


2012 ◽  
Vol 203 ◽  
pp. 500-503 ◽  
Author(s):  
Yun Dian Zhang ◽  
Long Shen Han

Ultrasonic deicing is a new method of deicing. This paper analyzed and designed a kind of ultrasonic deicing acoustic system, then simulated it with the ANSYS, which is a kind of finite element simulation computer software used to do finite element simulation work. The results indicate that the frequency and mechanical properties of the acoustic system meet the expectant demand.


2008 ◽  
Vol 587-588 ◽  
pp. 839-843 ◽  
Author(s):  
Carlos W. Moura e Silva ◽  
Jose R.T. Branco ◽  
Marta C. Oliveira ◽  
Jorge M. Antunes ◽  
Albano Cavaleiro

In this work, Si-doped DLC films were deposited on stainless steel (316SS) and polycarbonate (PC) substrates by RF-PACVD in gas mixtures of SiH4+CH4, with 2, 5 and 10 vol.% SiH4. The increase of the Si content in the films led to a progressive drop in the hardness from 30 GPa down to 23 GPa whereas the elastic modulus increased from 124 GPa up to 146 GPa, as measured in the SS coated substrates. In the case of coated PC samples pop-in was observed in the loading curve which was interpreted by finite element simulation and nanoscratching techniques.


Sign in / Sign up

Export Citation Format

Share Document