Interaction of PGF2α with prolactin on the release of cyclic AMP and progesterone from the isolated perfused ovary of the pregnant mare serum gonadotropin-treated rat

1986 ◽  
Vol 113 (3) ◽  
pp. 410-417 ◽  
Author(s):  
Jan Sogn ◽  
Gun Abrahamsson ◽  
Per O. Janson

Abstract. A newly developed model for perfusion of the isolated rat ovary was employed to study the interactions of Prl with PGF2α in respect to the effects of LH on cAMP formation and progesterone production in the 5 day old corpus luteum of the PMSG-treated rat. An inhibitory effect of PGF2α on both basal and LH stimulated progesterone secretion was found. This block also involved inhibition of the ovarian cAMP release which was not associated with a reduction of the flow of the medium to the ovary. When Prl was present in the medium the PGF2α block of LH-induced cAMP release was reversed. However, Prl failed to restore block of LH stimulation of progesterone secretion in 4 out of 9 experiments, indicating an additional site of action of PGF2α distal to the cAMP in these experiments.

1977 ◽  
Author(s):  
D.H. Cowan ◽  
M. Kikta ◽  
D. Baunach

Studies of cAMP in human platelets exposed to ethanol were done to assess one possible mechanism for ethanol-related platelet dysfunction. Ingestion of ethanol by 3 subjects produced blood ethanol levels from 65-76 mM. Thrombocytopenia occurred in 1 subject and impaired platelet function occurred in all. Platelet cAMP decreased 36,51, and 59% below control levels. Infusion of ethanol to 2 normals produced blood ethanol levels of 43 mM and decreased platelet cAMP by 15% and 22%. Incubation of normal platelets with 86 mM ethanol in vitro decreased cAMP from 13.8 ± 2.9 (1 SD) to 9.4 ± 3.5 (p<0.02). By contrast, ethanol did not impair the increase in cAMP that occurred with 1.3 μM PGE1. Further, ethanol enhanced the increase in cAMP produced by 2.0 mM papaverine (Pap) by 160-220% and that produced by Pap + PGE1 by 58%. Dopamine, 0.1 mM, caused a 23% decrease in the basal level of cAMP, a 31% decrease below the subnormal level of cAMP seen with ethanol alone, and a 41% reduction in the increased level of cAMP produced by Pap + ethanol. The effect of ethanol on platelet cAMP metabolism is complex. Ethanol reduces basal levels of cAMP, does not decrease elevated levels that result from PGE1 stimulation of adenylate cyclase, and augments the inhibitory effect of Pap on platelet phosphodiesterase (PDE). Despite causing a decrease in basal cAMP levels, ethanol may impair platelet function by potentiating the effect of agents or other conditions which increase cAMP. The effect of ethanol on Pap-stimulated PDE activity may be blocked by dopamine, a neuropharmacologic agent that is actively accumulated by platelets.


1994 ◽  
Vol 267 (4) ◽  
pp. G523-G528
Author(s):  
T. Takahashi ◽  
S. Kurosawa ◽  
C. Owyang

Carbachol (10(-8)-10(-3) M) produced two distinct biochemical responses in the guinea pig gallbladder smooth muscle: simulation of phosphoinositide (PI) hydrolysis and inhibition of forskolin-mediated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The mean effective dose (ED50) concentration (1.6 x 10(-5) M) of carbachol-mediated stimulation of PI hydrolysis was 145 times greater than the ED50 concentration (1.1 x 10(-7) M) of carbachol mediated inhibition of cAMP formation. The inhibitory effect of carbachol on cAMP formation was antagonized by the pretreatment of pertussis toxin. To determine whether these two biochemical responses were mediated by the same or different subtypes of muscarinic receptors, the relative potencies of muscarinic receptor antagonists were calculated by Schild analysis. The M3 muscarinic antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) exhibited inhibitory constant (Ki) values at 0.3 and 1.2 nM in antagonizing the stimulation of PI hydrolysis and the inhibition of cAMP formation, respectively. The corresponding Ki values for pirenzepine, a muscarinic M1 antagonist, were 11 and 130 nM. The corresponding Ki values for AF-DX 116, a muscarinic M2 antagonist, were 34 and 450 nM. Thus 4-DAMP was 37x and 108x more potent than pirenzepine in antagonizing the stimulation of PI hydrolysis and the inhibition of cAMP formation, respectively. In addition, compared with AF-DX 116, 4-DAMP was 113x and 375x more potent in reducing stimulation of PI hydrolysis and inhibition of cAMP formation. Cholecystokinin (CCK) octapeptide (10(-10)-(10-6) M) caused a significant increase of PI hydrolysis but had no inhibitory effects on cAMP formation evoked by forskolin (10(-5) M).(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 14 (1) ◽  
pp. 1-12 ◽  
Author(s):  
L Desrues ◽  
H Vaudry ◽  
M Lamacz ◽  
M C Tonon

ABSTRACT We have previously demonstrated that γ-aminobutyric acid (GABA) is a potent regulator of secretory and electrical activity in melanotrophs of the frog pituitary. The aim of the present study was to investigate the intracellular events which mediate the response of melanotrophs to GABA. We first observed that GABA (1–100 μm inhibited both basal and forskolin-stimulated cyclic AMP (cAMP) formation. The inhibitory effect of GABA on cAMP levels was mimicked by the GABAB receptor agonist baclofen (100 μm) and totally abolished by a 4-h pretreatment with pertussis toxin (01 μg/ml). In contrast, the specific GABAA agonist 3-aminopropane sulphonic acid (3APS) did not affect cAMP production. Both GABA and 3APS (100 μm each) induced a biphasic effect on α-MSH release from perifused frog neurointermediate lobes, i.e. a transient stimulation followed by an inhibition of α-MSH secretion. Administration of forskolin (10 μm) prolonged the stimulatory phase and attenuated the inhibitory phase evoked by GABA and 3APS, indicating that cAMP modulates the response of melanotrophs to GABAA agonists. Ejection of 3APS (1 μm) in the vicinity of cultured melanotrophs caused a massive increase in intracellular calcium concentration ([Ca2+]i). The stimulatory effect of 3APS on [Ca2+]i was abolished when the cells were incubated in a chloride-free medium. The formation of inositol trisphosphate was not affected by 3APS, suggesting that the increase in [Ca2+]i cannot be ascribed to mobilization of intracellular calcium stores. ω-Conotoxin did not alter the secretory response of frog neurointermediate lobes to 3APS, while nifedipine blocked the stimulation of α-MSH secretion induced by 3APS. In conclusion, the present data indicate that, in frog pituitary melanotrophs, (i) the stimulatory phase evoked by GABAA agonists can be accounted for by an influx of calcium through L-type calcium channels, (ii) the inhibitory effect evoked by GABAB agonists can be ascribed to inhibition of adenylate cyclase activity and (iii) cAMP attenuates the inhibitory phase evoked by GABAA agonists. Taken together, these data suggest that activation of GABAB receptors may modulate GABAA receptor function.


1989 ◽  
Vol 258 (3) ◽  
pp. 777-783 ◽  
Author(s):  
S Ramamoorthy ◽  
A S Balasubramanian

The activity of a purified cytosolic aminopeptidase (Mr 79,000) from monkey brain was stimulated about 4-fold by ATP-Mg2+. The stimulation was seen with either synthetic aminopeptidase substrates or natural peptides such as enkephalins. Both ATP and Mg2+ were required for stimulation, and ADP did not inhibit the stimulation. Non-hydrolysable analogues of ATP, deoxy-ATP and other nucleoside triphosphates stimulated to a lesser extent compared with ATP, whereas nucleoside mono- or di-phosphates were ineffective. The enzyme did not exhibit any ATPase activity. An ATPase inhibitor, orthovanadate, had no inhibitory effect on the ATP-Mg2+ stimulation. The aminopeptidase was not autophosphorylated by [gamma-32P]ATP and Mg2+, but in the presence of cyclic AMP-dependent protein kinase underwent phosphorylation on serine residue(s). Phosphorylation resulted in inactivation of the aminopeptidase activity, and also resulted in a decreased stimulation of the enzyme by ATP-Mg2+.


1978 ◽  
Vol 24 (7) ◽  
pp. 811-817 ◽  
Author(s):  
Lynda C. Kight-Olliff ◽  
J. W. Fitzgerald

Alkylsulfatase induction in resting cell suspensions of P. aeruginosa was inhibited by exogenously supplied adenosine or by ATP (2 mM). Adenine phosphate had no effect while AMP or ADP caused a slight stimulation of induction. The inhibitory effect of ATP required the presence of added Mg2+, was not reversed by cyclic-AMP(2 mM), and was independent of the nature of the inducer. Of a number of other nucleoside triphosphates tested, only UTP (2 mM) acted as an inhibitor of induction. These nucleotides at external concentrations of 6 mM also inhibited alkylsulfatase induction in actively growing cells.


1983 ◽  
Vol 214 (3) ◽  
pp. 999-1002 ◽  
Author(s):  
J E Felíu ◽  
J Marco

The newly isolated peptide PHI provoked a dose-dependent stimulation of glycogenolysis and gluconeogenesis in isolated rat hepatocytes; at 1 microM-PHI, both processes were increased 1.6-fold as compared with basal values. These PHI-mediated effects were accompanied by the activation of glycogen phosphorylase and the inactivation of pyruvate kinase. PHI (1 microM) also caused a 2-fold increase in hepatocyte cyclic AMP.


1984 ◽  
Vol 220 (1) ◽  
pp. 321-324 ◽  
Author(s):  
H Goko ◽  
S Takashima ◽  
S Shimizu ◽  
S Kagawa ◽  
A Matsuoka

The effects of verapamil, a calcium antagonist, on lipolysis in isolated rat adipocytes were studied. Verapamil (100 microM) potentiated lipolysis due to dibutyryl cyclic AMP (Bt2cAMP) at submaximal concentrations, with or without extracellular Ca2+. Lipolysis due to 0.5 mM-Bt2cAMP was potentiated by verapamil in a dose-dependent manner up to 200 microM, whereas at concentrations higher than 100 microM the stimulatory effect of verapamil was progressively diminished with or without extracellular Ca2+. Verapamil showed only an inhibitory effect on lipolysis due to adrenaline (0.1-10 microM) or 3-isobutyl-1-methylxanthine (IBMX; 25-200 microM). The stimulatory effect of verapamil on lipolysis due to Bt2cAMP was not blocked by alpha-adrenergic antagonists. These results suggest (i) that verapamil has a biphasic effect on lipolysis due to Bt2cAMP and only an inhibitory effect on that due to adrenaline or IBMX, and (ii) that extracellular Ca2+ or alpha-adrenergic receptors are not involved in the action of verapamil.


1986 ◽  
Vol 112 (4) ◽  
pp. 571-578 ◽  
Author(s):  
Monica G. Sender Baum ◽  
Kurt E. B. Ahrén

Abstract. The diterpene forskolin increased in a dosedependent way cyclic AMP (cAMP) accumulation in isolated corpora lutea from immature rats injected with an ovulatory dose of pregnant mare's serum gonadotropin (PMSG). The cAMP increase was significant already after 1 min of incubation with forskolin, and cAMP continued to rise to a maximum at about 30–60 min, with a clear decrease after 240 min of incubation. The forskolin effect was more pronounced in very young corpora lutea (1-day-old) than in older corpora lutea. There was a clear discrepancy between the marked effect on cAMP accumulation by forskolin and the steroidogenic response when compared with the corresponding effects of LH. Forskolin also increased progesterone production, but this effect was marginal compared with that of LH. Prostaglandin F2α (PGF2α) did not influence the forskolin stimulated cAMP increase. PGF2α has previously been shown to inhibit the stimulatory effect of LH on cAMP formation in this type of corpora lutea. The fact that PGF2α did not inhibit the forskolin stimulated cAMP production indicates that PGF2α does not act directly on the adenylate cyclase.


Sign in / Sign up

Export Citation Format

Share Document