Type I and III procollagen propeptides in growth hormone-deficient patients: effects of increasing doses of GH

1991 ◽  
Vol 124 (3) ◽  
pp. 278-282 ◽  
Author(s):  
Lars T. Jensen ◽  
Jens O.L. Jørgensen ◽  
Juha Risteli ◽  
Jens S. Christiansen ◽  
Ib Lorenzen

Abstract. The effect of increasing doses of growth hormone on collagen synthesis in GH-treated GH-deficient patients was determined in a short-term study. The synthesis of type I and III collagen was estimated by measurements of the carboxyterminal propeptide of type I procollagen and the aminoterminal propeptide of type III procollagen. Type I collagen is mainly found in bone and type III collagen in loose connective tissue. We observed a GH dose dependency of both procollagen propeptides. Serum type I procollagen propeptide was significantly higher following GH doses of 4 and 6 IU/day for 14 days compared with 2 IU/day (normal replacement dose) (p=0.04). Withdrawal of GH therapy for 14 days resulted in wider variation, but not significantly different from the levels at 2, 4 and 6 IU/day. A dose dependency was found regarding type III procollagen propeptide, showing significantly higher serum concentrations at a GH dose of 4 IU/day compared with 2 IU/day (p=0.001), and of 6 IU/day compared with 4 IU/day (p=0.001). Withdrawal of GH therapy resulted in significantly lower type III procollagen propeptide concentrations compared with those at a GH dose of 4 and 6 IU/day (p=0.03). Serum type III procollagen propeptide increased twice as much as type I procollagen propeptide, by 47 vs 25%, at a GH dose of 6 IU/day compared with 2 IU/day. The differences between the effects on type I and type III collagen may reflect differences in secretion or turn-over rate of collagen in bone and loose connective tissue. Serum type I and type III procollagen propeptides may prove useful as monitors of GH therapy, especially regarding the GH dose levels in the individual patients.

1989 ◽  
Vol 260 (2) ◽  
pp. 509-516 ◽  
Author(s):  
L Ala-Kokko ◽  
S Kontusaari ◽  
C T Baldwin ◽  
H Kuivaniemi ◽  
D J Prockop

Two overlapping cDNA clones that cover the complete length of the mRNA for human type III procollagen were characterized. The data provided about 2500 base pairs of sequence not previously defined for human type III procollagen. Two tripeptide sequences of -Gly-Xaa-Yaa- were identified that were not detected previously by amino acid sequencing of human type III collagen. The two additional tripeptide units, together with three previously detected, establish that the alpha 1 (III) chain is 15 amino acids longer than either the alpha 1 (I) or alpha 2 (I) chains of type I collagen. The additional tripeptide units made hydropathy plots of the N-terminal and C-terminal regions of type III collagen distinctly different from those of type I collagen. The data also demonstrated that human type III procollagen has the same third base preference in codons for glycine, proline and alanine that was previously found with human and chick type I procollagen. In addition, comparison of two cDNA clones from the same individual revealed a variation in structure in that the codon for amino acid 880 of the alpha 1 (III) chain was -CTT- for leucine in one clone and -TTT- for phenylalanine in the other.


1984 ◽  
Vol 219 (2) ◽  
pp. 625-634 ◽  
Author(s):  
A Brandt ◽  
R W Glanville ◽  
D Hörlein ◽  
P Bruckner ◽  
R Timpl ◽  
...  

The N-terminal extension peptide of type III procollagen, isolated from foetal-calf skin, contains 130 amino acid residues. To determine its amino acid sequence, the peptide was reduced and carboxymethylated or aminoethylated and fragmented with trypsin, Staphylococcus aureus V8 proteinase and bacterial collagenase. Pyroglutamate aminopeptidase was used to deblock the N-terminal collagenase fragment to enable amino acid sequencing. The type III collagen extension peptide is homologous to that of the alpha 1 chain of type I procollagen with respect to a three-domain structure. The N-terminal 79 amino acids, which contain ten of the 12 cysteine residues, form a compact globular domain. The next 39 amino acids are in a collagenase triplet sequence (Gly- Xaa - Yaa)n with a high hydroxyproline content. Finally, another short non-collagenous domain of 12 amino acids ends at the cleavage site for procollagen aminopeptidase, which cleaves a proline-glutamine bond. In contrast with type I procollagen, the type III procollagen extension peptides contain interchain disulphide bridges located at the C-terminus of the triple-helical domain.


1979 ◽  
Vol 181 (1) ◽  
pp. 75-82 ◽  
Author(s):  
S P Robins

Growing rabbits were infused for up to 10 h with labelled proline, tyrosine and leucine to achieve plateau conditions within body free pools, for [3H]proline infusion, blood free-proline specific radioactivity remained constant after about 1 h. For individual animals, type-I- and type-III-collagen precursors were isolated by precipitation with (NH4)2SO4 and DEAE-cellulose chromatography. Experiments where 3H- and 14C-labelled proline and tyrosine were infused concurrently for different periods of time showed that type I procollagen reached plateau specific radioactivity within 3 h and 90% of the plateau value after 2 h infusion, corresponding to a calculated apparent t 1/2 of less than 26 min. Plateau values for type I procollagen were taken as precursor amino acid pool specific radioactivities. The type-III-collagen-precursor fractions consistently showed lower rates of label incorporation and, by assuming that both type I and type III collagens are synthesized from the same amino acid pools, kinetic analysis revealed an apparent t 1/2 for the isolated type-III-collagen precursors of 3.9 h. For proline, there were large variations between animals in the ratio between the precursor pool for collagen synthesis and the skin homogenate free pool (0.31 +/- 0.13, mean +/- S.D.), so that collagen-synthesis rates based solely on total tissue free-pool values for proline are subject to large and inconsistent errors.


2005 ◽  
Vol 26 (8) ◽  
pp. 712-716
Author(s):  
A. I. Villa-Manzano ◽  
J. I. Gamez-Nava ◽  
M. Salazar-Paramo ◽  
I. C. Valera-Gonzalez ◽  
A. Garcia-Gonzalez ◽  
...  

1986 ◽  
Vol 240 (3) ◽  
pp. 699-708 ◽  
Author(s):  
J F Bateman ◽  
D Chan ◽  
T Mascara ◽  
J G Rogers ◽  
W G Cole

Quantitative and qualitative abnormalities of collagen were observed in tissues and fibroblast cultures from 17 consecutive cases of lethal perinatal osteogenesis imperfecta (OI). The content of type I collagen was reduced in OI dermis and bone and the content of type III collagen was also reduced in the dermis. Normal bone contained 99.3% type I and 0.7% type V collagen whereas OI bone contained a lower proportion of type I, a greater proportion of type V and a significant amount of type III collagen. The type III and V collagens appeared to be structurally normal. In contrast, abnormal type I collagen chains, which migrated slowly on electrophoresis, were observed in all babies with OI. Cultured fibroblasts from five babies produced a mixture of normal and abnormal type I collagens; the abnormal collagen was not secreted in two cases and was slowly secreted in the others. Fibroblasts from 12 babies produced only abnormal type I collagens and they were also secreted slowly. The slower electrophoretic migration of the abnormal chains was due to enzymic overmodification of the lysine residues. The distribution of the cyanogen bromide peptides containing the overmodified residues was used to localize the underlying structural abnormalities to three regions of the type I procollagen chains. These regions included the carboxy-propeptide of the pro alpha 1(I)-chain, the helical alpha 1(I) CB7 peptide and the helical alpha 1(I) CB8 and CB3 peptides. In one baby a basic charge mutation was observed in the alpha 1(I) CB7 peptide and in another baby a basic charge mutation was observed in the alpha 1(I) CB8 peptide. The primary defects in lethal perinatal OI appear to reside in the type I collagen chains. Type III and V collagens did not appear to compensate for the deficiency of type I collagen in the tissues.


1988 ◽  
Vol 36 (11) ◽  
pp. 1425-1432 ◽  
Author(s):  
R Fleischmajer ◽  
J S Perlish ◽  
R Timpl ◽  
B R Olsen

The purpose of this study was to correlate ultrastructural features of tendon collagen fibrils at various stages of development with the presence of procollagen, pN-collagen, pC-collagen, and the free amino propeptides and carboxyl propeptide of type I procollagen. Tendons from 10-, 14-, and 18-day chicken embryos reveal small, well-defined intercellular compartments containing collagen fibrils with diameters showing a unimodal distribution. At 21 days (hatching) and 9 days (post hatching) and at 5 weeks (post hatching), the compartments are larger, less well-defined, and there is multimodal distribution of tendon fibril diameters. Procollagen and the intermediates pN-collagen and pC-collagen are present in tendons up to 18 days. Thereafter there is a marked reduction in procollagen, whereas the intermediates persist throughout all stages of development. Similarly, free amino propeptides and carboxyl propeptides of type I procollagen were found at all stages. The amino propeptide of type III procollagen was restricted to the peritendineum until 7 weeks post hatching. At that time, a network of fibrils containing the amino propeptide of type III procollagen was seen delineating well-circumscribed compartments of collagen fibrils throughout the entire tendon. This study supports the notion that pN- and pC-collagen have an extracellular role and participate in collagen fibrillogenesis.


1991 ◽  
Vol 12 (2) ◽  
pp. 139-144 ◽  
Author(s):  
Jean-Claude Trinchet ◽  
Daniel Jean Hartmann ◽  
Dominique Pateron ◽  
Mabouba Laarif ◽  
Patrice Callard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document