scholarly journals Effects of meal and incretins in the regulation of splanchnic blood flow

2017 ◽  
Vol 6 (3) ◽  
pp. 179-187 ◽  
Author(s):  
Jukka Koffert ◽  
Henri Honka ◽  
Jarmo Teuho ◽  
Saila Kauhanen ◽  
Saija Hurme ◽  
...  

Objective Meal ingestion is followed by a redistribution of blood flow (BF) within the splanchnic region contributing to nutrient absorption, insulin secretion and glucose disposal, but factors regulating this phenomenon in humans are poorly known. The aim of the present study was to evaluate the organ-specific changes in BF during a mixed-meal and incretin infusions. Design A non-randomized intervention study of 10 healthy adults to study splanchnic BF regulation was performed. Methods Effects of glucose-dependent insulinotrophic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) infusions and mixed-meal were tested in 10 healthy, glucose tolerant subjects using PET-MRI multimodal imaging technology. Intestinal and pancreatic BF and blood volume (BV) were measured with 15O-water and 15O-carbon monoxide, respectively. Results Ingestion of a mixed-meal led to an increase in pancreatic and jejunal BF, whereas duodenal BF was unchanged. Infusion of GIP and GLP-1 reduced BF in the pancreas. However, GIP infusion doubled blood flow in the jejunum with no effect of GLP-1. Conclusion Together, our data suggest that meal ingestion leads to increases in pancreatic BF accompanied by a GIP-mediated increase in jejunal but not duodenal blood flow.

2021 ◽  
Vol 10 (11) ◽  
pp. 2487
Author(s):  
Soyeon Yoo ◽  
Dongkyu Kim ◽  
Gwanpyo Koh

Background: We aimed to investigate the changes in glucagon levels in people with diabetes after the ingestion of a mixed meal and the correlations of variation in glucagon levels with incretin and clinico-biochemical characteristics. Methods: Glucose, C-peptide, glucagon, intact glucagon-like peptide 1 (iGLP-1), and intact glucose-dependent insulinotropic polypeptide (iGIP) were measured in blood samples collected from 317 people with diabetes before and 30 min after the ingestion of a standard mixed meal. The delta (Δ) is the 30-min value minus the basal value. Results: At 30 min after meal ingestion, the glucagon level showed no difference relative to the basal value, whereas glucose, C-peptide, iGLP-1, and iGIP levels showed a significant increase. In univariate analysis, Δglucagon showed not only a strong correlation with HbA1c but also a significant correlation with fasting glucose, Δglucose, and estimated glomerular filtration rate. However, Δglucagon showed no significant correlations with ΔiGLP-1 and ΔiGIP. In the hierarchical multiple regression analysis, HbA1c was the only variable that continued to show the most significant correlation with Δglucagon. Conclusions: People with diabetes showed no suppression of glucagon secretion after meal ingestion. Patients with poorer glycemic control may show greater increase in postprandial glucagon level, and this does not appear to be mediated by incretin.


2011 ◽  
Vol 107 (10) ◽  
pp. 1445-1451 ◽  
Author(s):  
Riitta Törrönen ◽  
Essi Sarkkinen ◽  
Tarja Niskanen ◽  
Niina Tapola ◽  
Kyllikki Kilpi ◽  
...  

Berries are often consumed with sucrose. They are also rich sources of polyphenols which may modulate glycaemia after carbohydrate ingestion. The present study investigated the postprandial glucose, insulin and glucagon-like peptide 1 (GLP-1) responses to sucrose ingested with berries, in comparison with a similar sucrose load without berries. A total of twelve healthy subjects were recruited to a randomised, single-blind, placebo-controlled crossover study. They participated in two meal tests on separate days. The berry meal was a purée (150 g) made of bilberries, blackcurrants, cranberries and strawberries with 35 g sucrose. The control meal included the same amount of sucrose and available carbohydrates in water. Fingertip capillary and venous blood samples were taken at baseline and at 15, 30, 45, 60, 90 and 120 min after starting to eat the meal. Glucose, insulin and GLP-1 concentrations were determined from the venous samples, and glucose also from the capillary samples. Compared to the control meal, ingestion of the berry meal resulted in lower capillary and venous plasma glucose and serum insulin concentrations at 15 min (P = 0·021,P < 0·007 andP = 0·028, respectively), in higher concentrations at 90 min (P = 0·028,P = 0·021 andP = 0·042, respectively), and in a modest effect on the GLP-1 response (P = 0·05). It also reduced the maximum increases of capillary and venous glucose and insulin concentrations (P = 0·009,P = 0·011 andP = 0·005, respectively), and improved the glycaemic profile (P < 0·001 andP = 0·003 for capillary and venous samples, respectively). These results suggest that the glycaemic control after ingestion of sucrose can be improved by simultaneous consumption of berries.


2003 ◽  
Vol 284 (5) ◽  
pp. E1027-E1036 ◽  
Author(s):  
Makoto Nishizawa ◽  
Mary Courtney Moore ◽  
Masakazu Shiota ◽  
Stephanie M. Gustavson ◽  
Wanda L. Snead ◽  
...  

Arteriovenous difference and tracer ([3-3H]glucose) techniques were used in 42-h-fasted conscious dogs to identify any insulin-like effects of intraportally administered glucagon-like peptide 1-(7–36)amide (GLP-1). Each study consisted of an equilibration, a basal, and three 90-min test periods (P1, P2, and P3) during which somatostatin, intraportal insulin (3-fold basal) and glucagon (basal), and peripheral glucose were infused. Saline was infused intraportally in P1. During P2 and P3, GLP-1 was infused intraportally at 0.9 and 5.1 pmol · kg−1 · min−1in eight dogs, at 10 and 20 pmol · kg−1 · min−1in seven dogs, and at 0 pmol · kg−1 · min−1in eight dogs (control group). Net hepatic glucose uptake was significantly enhanced during GLP-1 infusion at 20 pmol · kg−1 · min−1[21.8 vs. 13.4 μmol · kg−1 · min−1(control), P < 0.05]. Glucose utilization was significantly increased during infusion at 10 and 20 pmol · kg−1 · min−1[87.3 ± 8.3 and 105.3 ± 12.8, respectively, vs. 62.2 ± 5.3 and 74.7 ± 7.4 μmol · kg−1 · min−1(control), P < 0.05]. The glucose infusion rate required to maintain hyperglycemia was increased ( P < 0.05) during infusion of GLP-1 at 5.1, 10, and 20 pmol · kg−1 · min−1(22, 36, and 32%, respectively, greater than control). Nonhepatic glucose uptake increased significantly during delivery of GLP-1 at 5.1 and 10 pmol · kg−1 · min−1(25 and 46% greater than control) and tended ( P = 0.1) to increase during GLP-1 infusion at 20 pmol · kg−1 · min−1(24% greater than control). Intraportal infusion of GLP-1 at high physiological and pharmacological rates increased glucose disposal primarily in nonhepatic tissues.


1997 ◽  
Vol 34 (3) ◽  
pp. 230-234 ◽  
Author(s):  
C. Drewes ◽  
M. A. Nauck ◽  
R. Horn ◽  
J. Holst ◽  
W. Schmiegel ◽  
...  

2001 ◽  
Vol 281 (3) ◽  
pp. G752-G763 ◽  
Author(s):  
Feruze Y. Enç ◽  
Neşe I˙meryüz ◽  
Levent Akin ◽  
Turgut Turoğlu ◽  
Fuat Dede ◽  
...  

We investigated the effect of acarbose, an α-glucosidase and pancreatic α-amylase inhibitor, on gastric emptying of solid meals of varying nutrient composition and plasma responses of gut hormones. Gastric emptying was determined with scintigraphy in healthy subjects, and all studies were performed with and without 100 mg of acarbose, in random order, at least 1 wk apart. Acarbose did not alter the emptying of a carbohydrate-free meal, but it delayed emptying of a mixed meal and a carbohydrate-free meal given 2 h after sucrose ingestion. In meal groups with carbohydrates, acarbose attenuated responses of plasma insulin and glucose-dependent insulinotropic polypeptide (GIP) while augmenting responses of CCK, glucagon-like peptide-1 (GLP-1), and peptide YY (PYY). With mixed meal + acarbose, area under the curve (AUC) of gastric emptying was positively correlated with integrated plasma response of GLP-1 ( r = 0.68 , P < 0.02). With the carbohydrate-free meal after sucrose and acarbose ingestion, AUC of gastric emptying was negatively correlated with integrated plasma response of GIP, implying that prior alteration of carbohydrate absorption modifies gastric emptying of a meal. The results demonstrate that acarbose delays gastric emptying of solid meals and augments release of CCK, GLP-1, and PYY mainly by retarding/inhibiting carbohydrate absorption. Augmented GLP-1 release by acarbose appears to play a major role in the inhibition of gastric emptying of a mixed meal, whereas CCK and PYY may have contributory roles.


Diabetologia ◽  
2013 ◽  
Vol 56 (12) ◽  
pp. 2679-2687 ◽  
Author(s):  
Carsten Dirksen ◽  
Kirstine N. Bojsen-Møller ◽  
Nils B. Jørgensen ◽  
Siv H. Jacobsen ◽  
Viggo B. Kristiansen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document