scholarly journals Exercise and insulin resistance in PCOS: muscle insulin signalling and fibrosis

2020 ◽  
Vol 9 (4) ◽  
pp. 346-359 ◽  
Author(s):  
N K Stepto ◽  
D Hiam ◽  
M Gibson-Helm ◽  
S Cassar ◽  
C L Harrison ◽  
...  

Objective Mechanisms of insulin resistance in polycystic ovary syndrome (PCOS) remain ill defined, contributing to sub-optimal therapies. Recognising skeletal muscle plays a key role in glucose homeostasis we investigated early insulin signalling, its association with aberrant transforming growth factor β (TGFβ)-regulated tissue fibrosis. We also explored the impact of aerobic exercise on these molecular pathways. Methods A secondary analysis from a cross-sectional study was undertaken in women with (n = 30) or without (n = 29) PCOS across lean and overweight BMIs. A subset of participants with (n = 8) or without (n = 8) PCOS who were overweight completed 12 weeks of aerobic exercise training. Muscle was sampled before and 30 min into a euglycaemic-hyperinsulinaemic clamp pre and post training. Results We found reduced signalling in PCOS of mechanistic target of rapamycin (mTOR). Exercise training augmented but did not completely rescue this signalling defect in women with PCOS. Genes in the TGFβ signalling network were upregulated in skeletal muscle in the overweight women with PCOS but were unresponsive to exercise training except for genes encoding LOX, collagen 1 and 3. Conclusions We provide new insights into defects in early insulin signalling, tissue fibrosis, and hyperandrogenism in PCOS-specific insulin resistance in lean and overweight women. PCOS-specific insulin signalling defects were isolated to mTOR, while gene expression implicated TGFβ ligand regulating a fibrosis in the PCOS-obesity synergy in insulin resistance and altered responses to exercise. Interestingly, there was little evidence for hyperandrogenism as a mechanism for insulin resistance.

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Fabiana S. Evangelista ◽  
Bruno Vecchiatto ◽  
Anna Laura V. Américo ◽  
Luiz Felipe Martucci ◽  
Marilia M. Ferreira ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Luke C. McIlvenna ◽  
Rhiannon K. Patten ◽  
Andrew J. McAinch ◽  
Raymond J. Rodgers ◽  
Nigel K. Stepto ◽  
...  

Women with polycystic ovary syndrome (PCOS), commonly have profound skeletal muscle insulin resistance which can worsen other clinical features. The heterogeneity of the condition has made it challenging to identify the precise mechanisms that cause this insulin resistance. A possible explanation for the underlying insulin resistance may be the dysregulation of Transforming Growth Factor-beta (TGFβ) signalling. TGFβ signalling contributes to the remodelling of reproductive and hepatic tissues in women with PCOS. Given the systemic nature of TGFβ signalling and its role in skeletal muscle homeostasis, it may be possible that these adverse effects extend to other peripheral tissues. We aimed to determine if TGFβ1 could negatively regulate glucose uptake and insulin signalling in skeletal muscle of women with PCOS. We show that both myotubes from women with PCOS and healthy women displayed an increase in glucose uptake, independent of changes in insulin signalling, following short term (16 hr) TGFβ1 treatment. This increase occurred despite pro-fibrotic signalling increasing via SMAD3 and connective tissue growth factor in both groups following treatment with TGFβ1. Collectively, our findings show that short-term treatment with TGFβ1 does not appear to influence insulin signalling or promote insulin resistance in myotubes. These findings suggest that aberrant TGFβ signalling is unlikely to directly contribute to skeletal muscle insulin resistance in women with PCOS in the short term but does not rule out indirect or longer-term effects.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Marcelo G. Pereira ◽  
Vanessa A. Voltarelli ◽  
Gabriel C. Tobias ◽  
Lara de Souza ◽  
Gabriela S. Borges ◽  
...  

Cancer cachexia is a multifactorial and devastating syndrome characterized by severe skeletal muscle mass loss and dysfunction. As cachexia still has neither a cure nor an effective treatment, better understanding of skeletal muscle plasticity in the context of cancer is of great importance. Although aerobic exercise training (AET) has been shown as an important complementary therapy for chronic diseases and associated comorbidities, the impact of AET on skeletal muscle mass maintenance during cancer progression has not been well documented yet. Here, we show that previous AET induced a protective mechanism against tumor-induced muscle wasting by modulating the Akt/mTORC1 signaling and eukaryotic initiation factors, specifically eIF2-α. Thereafter, it was determined whether the in vivo Akt activation would induce a hypertrophic profile in cachectic muscles. As observed for the first time, Akt-induced hypertrophy was able and sufficient to either prevent or revert cancer cachexia by modulating both Akt/mTORC1 pathway and the eIF-2α activation, and induced a better muscle functionality. These findings provide evidence that skeletal muscle tissue still preserves hypertrophic potential to be stimulated by either AET or gene therapy to counteract cancer cachexia.


2008 ◽  
Vol 88 (11) ◽  
pp. 1279-1296 ◽  
Author(s):  
Lorraine P Turcotte ◽  
Jonathan S Fisher

The purpose of this review is to provide information about the role of exercise in the prevention of skeletal muscle insulin resistance, that is, the inability of insulin to properly cause glucose uptake into skeletal muscle. Insulin resistance is associated with high levels of stored lipids in skeletal muscle cells. Aerobic exercise training decreases the amounts of these lipid products and increases the lipid oxidative capacity of muscle cells. Thus, aerobic exercise training may prevent insulin resistance by correcting a mismatch between fatty acid uptake and fatty acid oxidation in skeletal muscle. Additionally, a single session of aerobic exercise increases glucose uptake by muscle during exercise, increases the ability of insulin to promote glucose uptake, and increases glycogen accumulation after exercise, all of which are important to blood glucose control. There also is some indication that resistance exercise may be effective in preventing insulin resistance. The information provided is intended to help clinicians understand and explain the roles of exercise in reducing insulin resistance.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Schwarzer ◽  
S Zeeb ◽  
E Heyne ◽  
L.G Koch ◽  
S.L Britton ◽  
...  

Abstract   Low exercise capacity is a strong predictor of all-cause cardiovascular mortality and morbidity. In contrast, high exercise capacity is protective and “physical fitness” is considered beneficial. These effects seem to be mediated through mitochondrial function. Importantly, exercise capacity consists of an intrinsic (genetic) and an extrinsic (exercise, environmental) part. In humans, these two parts cannot be truly separated. The rat model of high (HCR) and low (LCR) capacity runners allows to distinguish between the two parts. We assessed mitochondrial function in this model, specifically investigating the impact of exercise training on mitochondrial respiratory capacity. HCR and LCR were divided into control and exercised groups. Exercise capacity was determined individually using a ramped test. Animals were trained five times a week for four weeks on a treadmill. Mitochondria were isolated from heart, M. gastrocnemius and liver. Citrate synthase activity and protein content were determined photometrically and respiratory capacity was measured using a Clark-type electrode. At the same age and tibia length, LCR-C were heavier and had a lower heart to body weight ratio than HCR-C. Citrate synthase activity was lower in skeletal muscle of LCR but cardiac citrate synthase was not different between sedentary HCR and LCR. Respiratory capacity in heart and liver was not different between sedentary HCR and LCR but was lower in skeletal muscle in LCR compared to HCR with all selected substrates (glutamate: 86,0±17,6 vs. 63,7±8,0; succinate: 203±19 vs. 136±17 nAO/min/mg Protein). Exercise training led to an increase in body weight in HCR but did not change body weight in LCR. Similarly, gastrocnemius and soleus weights only increased with exercise in HCR. Exercise led to an increase in citrate synthase activity in hearts of HCR (0,78±0,07 vs. 1,58±0,45 U/mg Protein) but not of LCR. Consistently, mitochondrial respiratory capacity was found increased in HCR with exercise in heart with all substrates (glutamate: 261±43 vs. 305±35; succinate 417±32 vs. 539±65 nAO/min/mg Protein). Liver was not affected by exercise. Conclusion Our data suggest that genetic predisposition for aerobic capacity additionally affects the response of mitochondria to exercise. Thus, it may be possible that the “born runner” benefits more from aerobic exercise training than the “less genetically equipped counterpart”. Funding Acknowledgement Type of funding source: None


2009 ◽  
Vol 94 (11) ◽  
pp. 4258-4266 ◽  
Author(s):  
Robert H. Coker ◽  
Rick H. Williams ◽  
Sophie E. Yeo ◽  
Patrick M. Kortebein ◽  
Don L. Bodenner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document