Tumor necrosis factor-α decreases thyrotropin-induced 5′-deiodinase activity in FRTL-5 thyroid cells

1994 ◽  
Vol 130 (5) ◽  
pp. 502-507 ◽  
Author(s):  
Boonsong Ongphiphadhanakul ◽  
Shih Lieh Fang ◽  
Kam-Tsun Tang ◽  
Nilima A Patwardhan ◽  
Lewis E Braverman

Ongphiphadhanakul B, Fang SL, Tang K-T, Patwardhan NA, Braverman LE. Tumor necrosis factor-α decreases thyrotropin-induced 5′-deiodinase activity in FRTL-5 thyroid cells. Eur J Endocrinol 1994;130:502–7. ISSN 0804–4643 Tumor necrosis factor-α (TNF-α) exerts various effects on many cell types. Acute administration of TNF-α to rats decreases hepatic 5′-deiodinase activity (5′D-I) and TNF-α has been implicated in the pathogenesis of the low triiodothyronine syndrome in non-thyroidal illness in humans. The thyroid, liver and kidney are rich in 5′D-I. Unlike hepatic and renal 5′D-I, thyroid 5′D-I is regulated by thyrotropin. We have investigated the effects of TNF-α on 5D-I in FRTL-5 cells, a cultured rat thyroid follicular cell line. Tumor necrosis factor-α did not significantly affect basal 5′D-I but thyrotropin markedly increased 5′D-I (p < 0.001). This TSH-induced increase in 5′D-I was attenuated by TNF-α in a dose-dependent manner (p < 0.001). Enzyme kinetic analysis demonstrated that thyrotropin increased 5′D-I by increasing Vmax (p < 0.01) without significantly affecting Km. Likewise, TNF-α decreased the thyrotropin-induced 5′D-I by decreasing Vmax (p < 0.05) but not Km. The effect of TNF-α on thyrotropin-induced 5′D-I in FRTL-5 cells is probably mediated through post-thyrotropin-induced generation of cyclic adenosine monophosphate (cAMP) because TNF-α inhibited both dibutyryl cAMP (p < 0.001) and forskolin (p < 0.001)-induced increases in 5′D-I without affecting cAMP generation stimulated by thyrotropin. In conclusion, we have demonstrated that TNF-α inhibits thyrotropininduced 5′D-I activity in FRTL-5 cells by pathways distal to the generation of cAMP and that TNF-α may play a role in the modulation of the production of triiodothyronine by the thyroid gland. Furthermore, the increase in TNF-α observed in patients with the euthyroid sick syndrome may contribute to the low serum triiodothyronine observed in these patients, not only by inhibiting peripheral generation of triiodothyronine from thyroxine but also by decreasing thyroidal generation and subsequent secretion of triiodothyronine. Lewis E Braverman, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA

2019 ◽  
Vol 88 ◽  
pp. 149-150 ◽  
Author(s):  
Erkoseoglu Ilknur ◽  
Kadioglu Mine ◽  
Cavusoglu Irem ◽  
Sisman Mulkiye ◽  
Aran Turhan ◽  
...  

2017 ◽  
Vol 9 ◽  
pp. 117957351770927 ◽  
Author(s):  
Rudy Chang ◽  
Kei-Lwun Yee ◽  
Rachita K Sumbria

Tumor necrosis factor α (TNF-α) plays a central role in the pathophysiology of Alzheimer’s disease (AD). Food and Drug Administration–approved biologic TNF-α inhibitors are thus a potential treatment for AD, but they do not cross the blood-brain barrier. In this short review, we discuss the involvement of TNF-α in AD, challenges associated with the development of existing biologic TNF-α inhibitors for AD, and potential therapeutic strategies for targeting TNF-α for AD therapy.


2002 ◽  
Vol 283 (4) ◽  
pp. G947-G956 ◽  
Author(s):  
Nathan W. Werneburg ◽  
M. Eugenia Guicciardi ◽  
Steven F. Bronk ◽  
Gregory J. Gores

Cathepsin B (Cat B) is released from lysososomes during tumor necrosis factor-α (TNF-α) cytotoxic signaling in hepatocytes and contributes to cell death. Sphingosine has recently been implicated in lysosomal permeabilization and is increased in the liver by TNF-α. Thus the aims of this study were to examine the mechanisms involved in TNF-α-associated lysosomal permeabilization, especially the role of sphingosine. Confocal microscopy demonstrated Cat B-green fluorescent protein and LysoTracker Red were both released from lysosomes after treatment of McNtcp.24 cells with TNF-α/actinomycin D, a finding compatible with lysosomal destabilization. In contrast, endosomes labeled with Texas Red dextran remained intact, suggesting lysosomes were specifically targeted for permeabilization. LysoTracker Red was released from lysosomes in hepatocytes treated with TNF-α or sphingosine in Cat B(+/+) but not Cat B(−/−) hepatocytes, as assessed by a fluorescence-based assay. With the use of a calcein release assay in isolated lysosomes, sphingosine permeabilized liver lysosomes isolated from Cat B(+/+) but not Cat B(−/−) liver. C6ceramide did not permeabilize lysosomes. In conclusion, these data implicate a sphingosine-Cat B interaction inducing lysosomal destabilization during TNF-α cytotoxic signaling.


2009 ◽  
Vol 36 (4) ◽  
pp. 837-842 ◽  
Author(s):  
ANA FILIPA MOURÃO ◽  
JOANA CAETANO-LOPES ◽  
PAULA COSTA ◽  
HELENA CANHÃO ◽  
MARIA JOSÉ SANTOS ◽  
...  

Objective.Considering the relevance of tumor necrosis factor-α (TNF-α) in the pathophysiology of juvenile idiopathic arthritis (JIA), it is likely that polymorphisms in its promoter area may be relevant in disease susceptibility and activity. We investigated if clinical measures of JIA activity and TNF-α serum concentrations were associated with TNF-α −308 genotypes.Methods.Portuguese patients with JIA in 5 pediatric rheumatology centers were recruited consecutively, along with a control group of healthy subjects. Demographic and clinical data and blood samples were collected from each patient. DNA was extracted for analysis of TNF-α gene promoter polymorphisms at position −308 by restriction fragment-length polymorphism.Results.One hundred fourteen patients and 117 controls were evaluated; 57% of patients presented the oligoarticular subtype, 25% the polyarticular subtype, 8% the systemic subtype, and 9% had enthesitis-related arthritis and 5% psoriatic arthritis. Twenty-four percent of the patients presented the −308 GA/AA genotypes and 76% the −308 GG genotype, similar to findings in controls. Patients with the −308 GA/AA genotype had higher degree of functional impairment, erythrocyte sedimentation rate, 100-mm visual analog scale score for disease activity, and TNF-α levels compared to those with the −308 GG genotype.Conclusion.TNF-α −308 GA/AA genotypes were found to be related to higher inflammatory activity and worse measures of disease activity in Portuguese patients with JIA. They were not associated with susceptibility to JIA.


2008 ◽  
Vol 19 (3) ◽  
pp. 855-864 ◽  
Author(s):  
Yoshinori Takei ◽  
Ronald Laskey

Although nerve growth factor (NGF) promotes survival of neurons, tumor necrosis factor α (TNF-α) contributes to cell death triggered by NGF depletion, through TNF-α receptor (TNFR) 1. In contrast to this effect, TNF-α can promote neural cell survival via TNF-α receptor TNFR2. Although these findings demonstrate pivotal roles of TNF-α and NGF in cell fate decisions, cross-talk between these signaling pathways has not been clarified. We find that NGF can induce TNF-α synthesis through the nuclear factor-κB transcription factor. This provides a new basis for examining the cross-talk between NGF and TNF-α. Inhibition of TNFR2 shows opposite effects on two downstream kinases of NGF, extracellular signal-regulated kinase (Erk) and Akt. It increases Erk activation by NGF, and this increased activation induces differentiation of neuroblastoma cell lines. Reciprocally, inhibition of TNFR2 decreases Akt activation by NGF. Consistent with an essential role of Akt in survival signaling, inhibition of TNF-α signaling decreases NGF-dependent survival of neurons from rat dorsal root ganglia. Thus, NGF and NGF-induced TNF-α cooperate to activate Akt, promoting survival of normal neural cells. However, the NGF-induced TNF-α suppresses Erk activation by NGF, blocking NGF-induced differentiation of neuroblastoma cells. TNFR2 signaling could be a novel target to modulate cell responses to NGF.


1995 ◽  
Vol 146 (2) ◽  
pp. 279-286 ◽  
Author(s):  
R C Olney ◽  
D M Wilson ◽  
M Mohtai ◽  
P J Fielder ◽  
R L Smith

Abstract IGF-I is the major anabolic factor for cartilage matrix production. Chondrocytes and cartilage treated with interleukin-1α (IL-1α), and chondrocytes from several models of inflammatory joint disease, exhibit reduced responsiveness to IGF-I. Since the IGF-binding proteins (IGFBPs) modulate the effects of IGF-I, we examined the effect of IL-1α and tumor necrosis factor-α (TNF-α) on IGFBP production by normal human articular chondrocytes in primary culture. Western ligand blots and immunoprecipitation of conditioned medium samples showed that articular chondrocytes produced IGFBPs-2, −3 and −4 and glycosylated IGFBP-4. Both IL-1α and TNF-α increased chondrocyte production of IGFBP-3, but did not alter IGFBP-4 production. The activity of a neutral metalloprotease with the ability to cleave IGFBP-3 was also increased by IL-1α. These data suggest that the cytokines IL-1α and TNF-α may act to reduce IGF-I access to chondrocytes by increasing production of IGFBP-3. This may be a factor in the decreased matrix production in the inflammatory arthritides. Journal of Endocrinology (1995) 146, 279–286


Sign in / Sign up

Export Citation Format

Share Document