Recombinant growth hormone and insulin-like growth factor I do not alter gonadotrophin stimulation of the baboon testis in vivo

1994 ◽  
Vol 131 (4) ◽  
pp. 405-412 ◽  
Author(s):  
Bronwyn A Crawford ◽  
David J Handelsman

Crawford BA, Handelsman DJ. Recombinant growth hormone and insulin-like growth factor I do not alter gonadotrophin stimulation of the baboon testis in vivo. Eur J Endocrinol 1994;131:405–12. ISSN 0804–4643 In vitro studies indicate a physiological role for insulin-like growth factor I (IGF-I) in paracrine regulation of testicular function and recent clinical studies suggest a potential role for growth hormone (GH) and/or IGF-I in the treatment of hypogonadotrophic states in males. This study aimed to examine the effects of pretreatment with recombinant human GH (rhGH) or rhIGF-I on the response to gonadotrophins of the non-human primate testis in vivo. Using a balanced Latin square design with repeated measures, six prepubertal male hamadryas baboons (Papio hamadryas hamadryas) were treated in a cross-over sequence for periods of 18 days with daily im injections of rhGH (0.4 IU·kg−1 · day−1), rhIGF-I (0.1 mg·kg−1 · day−1) or saline with a 2-week washout period between each treatment. A single im injection of hCG (1500 IU) increased serum testosterone (p = 0.0002) but neither rhGH nor rhIGF-I influenced the timing or magnitude of this response (p > 0.5). A single im dose of FSH (75 IU) stimulated immunoreactive inhibin (p = 0.01) but also was unaffected in magnitude or timing by pretreatment with rhGH or rhIGF-I (p> 0.2). Circulating IGF-I levels were increased independently by hCG (p = 0.01) and FSH (p < 0.0001) administration. These findings indicate that neither GH nor IGF-I pre-treatment enhance acute gonadal responses to gonadotrophin stimulation of the prepubertal non-human primate testis in vivo. These findings suggest that GH or IGF-I treatment of hypogonadotrophic men without somatotrophin deficiency is unlikely to be beneficial. David J Handelsman, Andrology Unit, Royal Prince Alfred Hospital, Departments of Medicine and Obstetrics and Gynaecology, University of Sydney, Sydney 2006, Australia

1995 ◽  
Vol 268 (5) ◽  
pp. E849-E857 ◽  
Author(s):  
I. Dorup ◽  
T. Clausen

The functional homology between insulin and insulin-like growth factor I (IGF-I) comprises effects on growth and glucose metabolism. Because insulin stimulates the Na(+)-K+ pump, IGF-I might exert a similar effect. We show here that IGF-I increases 42K and 86Rb uptake and the efflux of 22Na in isolated rat soleus muscle. This leads to a significant decrease (21-55%, P < 0.001) in intracellular Na+ and a small increase in intracellular K+. In extensor digitorum longus (EDL) muscle, similar effects were observed. The stimulation of K+ uptake and the reduction in intracellular Na+ in the soleus were blocked by ouabain, indicating that they reflect an acute stimulation of active Na(+)-K+ transport. This conclusion was further supported by the observation that the [3H]ouabain binding rate was significantly increased by IGF-I. IGF-I increased ouabain-suppressible 42K or 86Rb uptake by 56 and 54%, respectively. The effects of IGF-I and epinephrine on ouabain-suppressible 86Rb influx in rat soleus were additive, whereas the effects of insulin and IGF-I were similar and nonadditive. The effects of IGF-I were seen down to a concentration of 10(-8) M, which is unlikely to stimulate the insulin receptor, and it is therefore plausible that IGF-I exerts its effect on Na(+)-K+ transport through its own receptor. IGF-I may play a role in the maintenance of muscle Na+ and K+ contents also in vivo, especially in patients treated with IGF-I.


1997 ◽  
Vol 82 (4) ◽  
pp. 1064-1070 ◽  
Author(s):  
Michael I. Lewis ◽  
Thomas J. Lorusso ◽  
Mario Fournier

Lewis, Michael I., Thomas J. LoRusso, and Mario Fournier.Effect of insulin-like growth factor I and/or growth hormone on diaphragm of malnourished adolescent rats. J. Appl. Physiol. 82(4): 1064–1070, 1997.—Young growing animals appear to have significantly reduced “nutritional reserve” to short periods of unstressed starvation compared with adults, with resultant growth arrest and/or atrophy of diaphragm (Dia) muscle fibers. The aim of this study was to assess in an adolescent rat model of acute nutritional deprivation (ND; 72 h) the impact of insulin-like growth factor I (IGF-I), with or without added growth hormone (GH), on the cross-sectional areas (CSA) of individual Dia muscle fibers. Five groups were studied: 1) control (Ctr); 2) ND; 3) ND given IGF-I (ND/IGF-I); 4) ND given GH (ND/GH); and 5) ND given a combination of IGF-I and GH (ND/IGF-I/GH). IGF-I was given by a subcutaneously implanted osmotic minipump (200 μg/day), whereas GH was administered twice daily by a subcutaneous injection (250 μg every 12 h). Isometric contractile and fatigue properties of the Dia were determined in vitro. Forces were normalized for muscle CSA (i.e., specific force). Dia fiber type proportions were determined histochemically, and fiber CSA was quantified by using a computer-based image-processing system. Total serum IGF-I concentrations were significantly reduced in ND and ND/GH animals, compared with Ctr, and elevated in the groups receiving IGF-I. The provision of growth factors did not alter the contractile or fatigue properties of ND animals. Dia fiber type proportions were similar among the groups. In ND animals, there was a significant reduction in the CSA of types I, IIa, IIx, and IIc Dia fibers compared with Ctr. The administration of IGF-I alone or in combination with GH to ND animals significantly diminished the reduction in Dia fiber size. GH alone had no effect on Dia fiber size in ND animals. We conclude that with acute ND the peripheral resistance to the action of GH appears to be bypassed by the administration of IGF-I alone or in combination with GH.


Sign in / Sign up

Export Citation Format

Share Document