Regulation of luteal function by luteinizing hormone and prolactin at different times of the luteal phase

1995 ◽  
Vol 133 (6) ◽  
pp. 701-717 ◽  
Author(s):  
Bernd Hinney ◽  
Christina Henze ◽  
Wolfgang Wuttke

Hinney B, Henze C, Wuttke W. Regulation of luteal function by luteinizing hormone and prolactin at different times of the luteal phase. Eur J Endocrinol 1995;133:701–17. ISSN 0804–4643 In 54 healthy women luteal function was assessed by sequential withdrawals of blood samples at 10-min intervals for 8–10 h. Subgroups of the women were studied during the early and late ovulatory period and during the early, mid- and late luteal phase. Bio- and immunoreactive luteinizing hormone (LH), prolactin, testosterone, estradiol and progesterone levels were determined in each sample. While the bio- and immunoreactivity of LH pulses correlated fairly well, a number of bio- or immunoreactive LH pulses were observed that were not detected by the respective other method. Responsivity of the corpus luteum to LH episodes developed during the second half of the luteal phase and was most marked in cases where LH episodes were accompanied by prolactin episodes. In the absence of prolactin episodes, LH episodes did not stimulate progesterone or estradiol secretion. The highest incidence of coincident LH and prolactin pulses was observed during the mid- and late luteal phase. Serum testosterone levels showed also some fluctuations but these were independent of immuno- or bioactive LH episodes and therefore most likely not of luteal origin. Prior to menstruation LH episodes were not any more stimulatory to progesterone secretion, indicating that it is not the withdrawal of LH but, rather, another possibly intraovarian mechanism that results in luteolysis. In a number of women, increased estradiol and progesterone secretion was strictly related to the prior occurrence of LH and prolactin pulses. In other subjects, both gonadal steroids fluctuated largely with no discernible correlation to LH fluctuations. This may indicate that in these subjects the corpora lutea have some degree of autonomous regulation. W Wuttke, Abteilung für Klinische und Experimentelle Endokrinologie, Universitäts-Frauenklinik, Robert-Koch-Strasse 40, D-37075 Gottingen, Germany

1981 ◽  
Vol 91 (2) ◽  
pp. 197-203 ◽  
Author(s):  
M. C. RICHARDSON ◽  
G. M. MASSON

Cell suspensions were prepared from tissue samples of human corpora lutea obtained during the mid- and late-luteal phase of the menstrual cycle. Both oestradiol and progesterone production by dispersed cells were stimulated by similar concentrations of human chorionic gonadotrophin (hCG). As the degree of stimulation of production by hCG was greater for progesterone than for oestradiol (five- to tenfold compared with two- to threefold higher than basal production), the ratio of progesterone to oestradiol produced varied according to the level of trophic stimulation. A comparison of cell suspensions prepared from mid- and late-luteal phase corpora lutea, exposed to the same concentration of hCG (10 i.u./ml) in vitro, did not reveal a shift to oestradiol production in the late-luteal phase. Provision of additional testosterone during incubation raised the level of oestradiol production by dispersed luteal cells. At an optimum concentration of testosterone (1 μmol/l), oestradiol synthesis was not raised further in the presence of hCG or N6, O2-dibutyryl cyclic AMP, suggesting a lack of induction or activation of the aromatase system by gonadotrophin in short-term cultures. Basal and stimulated levels of progesterone production were not significantly impaired in the presence of testosterone.


2020 ◽  
Vol 102 (6) ◽  
pp. 1270-1280 ◽  
Author(s):  
Gamze Bildik ◽  
Nazli Akin ◽  
Yashar Esmaeilian ◽  
Francesko Hela ◽  
Kayhan Yakin ◽  
...  

Abstract Human chorionic gonadotropin (hCG) is a luteotropic hormone that promotes the survival and steroidogenic activity of corpus luteum (CL) by acting through luteinizing hormone receptors (LHRs) expressed on luteinized theca and granulosa cells (GCs). Therefore, it is used to support luteal phase in in vitro fertilization (IVF) cycles to improve clinical pregnancy rates and prevent miscarriage. However, the molecular mechanism underlying this action of hCG is not well characterized. To address this question, we designed an in vitro translational research study on the luteal GCs obtained from 58 IVF patients. hCG treatment at different concentrations and time points activated c-Jun N-terminal kinase (JNK) pathway and significantly increased its endogenous kinase activity along with upregulated expression of steroidogenic enzymes (steroidogenic acute regulatory protein (stAR), 3β-Hydroxysteroid dehydrogenase (3β-HSD)) in a dose-dependent manner in the luteal GCs. As a result, in vitro P production of the cells was significantly enhanced after hCG. When JNK pathway was inhibited pharmacologically or knocked-down with small interfering RNA luteal function was compromised, P4 production was declined along with the expression of stAR and 3β-HSD in the cells. Further, hCG treatment after JNK inhibition failed to correct the luteal defect and promote P4 output. Similar to hCG, luteinizing hormone (LH) treatment improved luteal function as well and this action of LH was associated with JNK activation in the luteal GCs. These findings could be important from the perspective of CL biology and luteal phase in human because we for the first time identify a critical role for JNK signaling pathway downstream LHR activation by hCG/LH in luteal GCs. Summary Sentence JNK signaling pathway plays a central role in the upregulated expression of the steroidogenic enzymes StAR and 3b-HSD and augmented progesterone production by hCG/LH in human luteal granulosa cells.


Reproduction ◽  
2001 ◽  
pp. 643-648 ◽  
Author(s):  
A Shaham-Albalancy ◽  
Y Folman ◽  
M Kaim ◽  
M Rosenberg ◽  
D Wolfenson

Low progesterone concentrations during the bovine oestrous cycle induce enhanced responsiveness to oxytocin challenge late in the luteal phase of the same cycle. The delayed effect of low progesterone concentrations during one oestrous cycle on uterine PGF(2alpha) secretion after oxytocin challenge on day 15 or 16 of the subsequent cycle was studied by measuring the concentrations of the major PGF(2alpha) metabolite (13,14-dihydro-15-keto PGF(2alpha); PGFM) in plasma. Two experiments were conducted, differing in the type of progesterone treatment and in the shape of the low progesterone concentration curves. In Expt 1, progesterone supplementation with intravaginal progesterone inserts, with or without an active corpus luteum, was used to obtain high, or low and constant plasma progesterone concentrations, respectively. In Expt 2, untreated cows, representing high progesterone treatment, were compared with cows that had low but increasing plasma progesterone concentrations that were achieved by manipulating endogenous progesterone secretion of the corpus luteum. Neither experiment revealed any differences in plasma progesterone concentrations between the high and low progesterone groups in the subsequent oestrous cycle. In both experiments, both groups had similar basal concentrations of PGFM on day 15 (Expt 1) or 16 (Expt 2) of the subsequent oestrous cycle, 18 days after progesterone treatments had ended. In both experiments, the increases in PGFM concentrations in the low progesterone groups after an oxytocin challenge were markedly higher than in the high progesterone groups. These results indicate that low progesterone concentrations during an oestrous cycle have a delayed stimulatory effect on uterine responsiveness to oxytocin during the late luteal phase of the subsequent cycle. This resulting increase in PGF(2alpha) secretion may interfere with luteal maintenance during the early stages of pregnancy.


1973 ◽  
Vol 57 (1) ◽  
pp. 63-74 ◽  
Author(s):  
I. ROTHCHILD ◽  
R. B. BILLIAR ◽  
I. T. KLINE ◽  
G. PEPE

SUMMARY To test the hypothesis of Raj & Moudgal (1970) that luteinizing hormone (LH) is the essential luteotrophin during pregnancy in the rat, pregnant rats were hypophysectomized and hysterectomized on either day 12 or day 15 of pregnancy, and the changes in peripheral serum progesterone level measured. The serum progesterone level remained at approximately the day-12 value for 3 days after hypophysectomy and hysterectomy on day 12, but fell drastically and remained low after the same operation on day 15, or in pseudopregnant rats operated on on day 12, or after removal of the ovaries from pregnant rats on day 12. Oestrogen treatment increased the serum progesterone level slightly in the pregnant rats after hypophysectomy and hysterectomy, but not after ovariectomy; it had no effect in the pseudopregnant rats, with or without deciduomata, or in lactating rats nursing litters of seven to nine pups. The corpora lutea stopped growing or slowly regressed soon after hypophysectomy—hysterectomy in all except the pregnant rats operated on on day 12 and treated with oestrogen, and in these growth was very slight. The luteal content of progesterone did not change for 3 days after hypophysectomy—hysterectomy on day 12 of pregnancy, and fell slightly thereafter. The metabolic clearance rate of progesterone was not significantly changed by hypophysectomy—hysterectomy. It thus appears that true secretion of progesterone continues in pregnant rats for about 3 days after day 12 in the absence of the pituitary and placentas, but at a much lower rate than that found in intact, or in day-12 hypophysectomized pregnant rats (Pepe & Rothchild, 1972a). The placental luteotrophin thus seems to increase the rate of progesterone secretion in the absence of LH. The results do not seem to fit with the hypothesis that LH is essential for progesterone secretion.


1986 ◽  
Vol 111 (1) ◽  
pp. 83-90 ◽  
Author(s):  
H. M. Fraser ◽  
M. Abbott ◽  
N. C. Laird ◽  
A. S. McNeilly ◽  
J. J. Nestor ◽  
...  

ABSTRACT The role of the pituitary gonadotrophins in controlling luteal function in the stumptailed macaque has been investigated by examining profiles of serum concentrations of LH, FSH, progesterone and oestradiol in daily blood samples from 13 monkeys during the menstrual cycle, and in blood samples taken at hourly intervals between 09.00 and 21.00 h on different days of the luteal phase in 13 cycles. The effects of acute withdrawal of gonadotrophins was investigated by administering a single injection of 300 μg LHRH antagonist/kg body weight at different stages of the luteal phase during 28 cycles. Although there were high basal values and marked fluctuations of bioactive LH during the first 4 days after the LH peak, progesterone profiles showed no corresponding short-term changes, there being a slow and steady rise in progesterone concentrations during the sampling periods. After day 5, basal LH secretion decreased, but high amplitude LH pulses were identified which were associated with episodes of progesterone secretion. Administration of the LHRH antagonist caused a suppression of bioactive LH and progesterone concentrations at all stages of the luteal phase, although some basal secretion of progesterone was maintained through the 24-h period of effective antagonist gonadotroph blockade. Luteal function recovered apparently normally in all monkeys treated in the early–mid-luteal phase. Serum concentrations of FSH and oestradiol fluctuated comparatively less during the 12-h sampling periods, and the antagonist had less suppressive effects on the concentrations of these hormones. The LHRH antagonist had no apparent effect on prolactin release. It appears that the corpus luteum is relatively unresponsive to the high serum LH concentrations during the early luteal phase, but that responsiveness increases as the corpus luteum develops. The corpus luteum is, however, susceptible to withdrawal of LH not only in the mid–late luteal phase when the relationship with LH is apparent, but also during the early luteal phase. J. Endocr. (1986) 111, 83–90


1977 ◽  
Vol 73 (1) ◽  
pp. 115-122 ◽  
Author(s):  
I. A. SWANSTON ◽  
K. P. McNATTY ◽  
D. T. BAIRD

SUMMARY The concentration of prostaglandin F2α (PGF2α), progesterone, pregnenolone, oestradiol-17β, oestrone, androstenedione and testosterone was measured in corpora lutea obtained from 40 women at various stages of the menstrual cycle. The concentration of PGF2α was significantly higher in corpora lutea immediately after ovulation (26·7 ± 3·9 (s.e.m.) ng/g, P < 0·005) and in corpora albicantia (16·3 ± 3·3 ng/g, P < 0·005) than at any other time during the luteal phase. There was no correlation between the concentration of PGF2α and that of any steroid. The progesterone concentration was highest in corpora lutea just after ovulation (24·9 ± 6·7 μg/g) and in early luteal groups (25·7 ± 6·8 μg/g) but declined significantly (P < 0·05) to its lowest level in corpora albicantia (1·82 ± 0·66 μg/g). The concentration of oestradiol-17β in the corpus luteum and luteal weight were significantly greater during the mid-luteal phase than at any other stage (concentration 282 ± 43 ng/g, P < 0·05; weight 1·86 ± 0·18 g, P < 0·005). The results indicate that regression of the human corpus luteum is not caused by a rise in the ovarian concentration of PGF2α in the late luteal phase of the cycle.


1972 ◽  
Vol 54 (1) ◽  
pp. 25-NP ◽  
Author(s):  
J. DAVIES ◽  
L. H. HOFFMAN ◽  
G. R. DAVENPORT

SUMMARY Ovine luteinizing hormone (LH) (300 μg/day in divided subcutaneous doses) had a luteotrophic effect of limited duration in intact and hypophysectomized 10-day pseudopregnant rabbits (6–10 days in intact animals; 3–6 days in hypophysectomized animals). Higher dose levels caused reovulation in which case luteolysis occurred. Suppression of reovulation with anti-ovine follicle-stimulating hormone (FSH) serum permitted the daily dose of LH to be raised to 750 μg without causing luteolysis or reovulation. Anti-LH serum was luteolytic in the intact animals. A combination of ovine FSH (200 μg) and LH (300 μg) was indistinguishable from LH alone in terms of its luteotrophic effect in hypophysectomized 10-day pseudopregnant rabbits. Ovine FSH at large daily dose levels (1000 μg) was more effectively luteotrophic than LH alone in a significant number of animals for 10 days after hypophysectomy: endometrial changes in these animals resembled those only seen in normal pregnancy. The luteotrophic effect of 1000 μg FSH was believed to be dependent on a small but significant content of LH, estimated to be about 10 μg. Ovine FSH and anti-FSH serum in intact pseudopregnant rabbits had no detectable effect on luteal function. Animals hypophysectomized at the 7th day and treated with 300 or 500 μg LH/day showed no luteal maintenance for 6 days nor was reovulation induced. Sensitivity to the luteotrophic effect of LH was deemed, therefore, to be greater at 10 than at 7 days of pseudopregnancy. Endometrial criteria were found to be reliable indicators of luteal function. The appearance of ciliated cells was correlated with the decline of the corpora lutea. When reovulation occurred, a new progestational cycle was rapidly superimposed on the existing one.


Sign in / Sign up

Export Citation Format

Share Document