scholarly journals IGF-I production by adult rat hepatocytes is stimulated by transforming growth factor-alpha and transforming growth factor-beta1

1999 ◽  
pp. 577-582 ◽  
Author(s):  
A Voci ◽  
M Arvigo ◽  
M Massajoli ◽  
S Garrone ◽  
C Bottazzi ◽  
...  

Previously, we have observed that epidermal growth factor (EGF), a potent mitogen for cultured hepatocytes, stimulates the production of IGF-I and IGF-binding proteins (IGFBPs) by cultured hepatocytes from adult rats. This study was undertaken to investigate the possibility that other growth factors of hepatic origin could specifically be involved in the regulation of IGF-I and IGFBP expression. The effects of transforming growth factor-alpha (TGF-alpha), through EGF receptors to induce a mitogenic response, and transforming growth factor-beta1 (TGF-beta1), produced by non-parenchymal liver cells and able to inhibit hepatocyte proliferation in vivo and in culture, have been studied in cultured adult rat hepatocytes. Our results demonstrate that TGF-alpha and TGF-beta1 significantly stimulate IGF-I and IGFBP secretion by cultured hepatocytes but no change in the abundance of IGF-I and IGFBP mRNAs was observed with respect to controls. Cycloheximide is able to inhibit both basal and TGF-stimulated release of IGF-I and a similar effect was elicited by octreotide, the somatostatin analog, known to directly affect hepatic IGF-I gene expression. Our findings show the role of the liver in the secretion of IGF-I and IGFBPs, not only under endocrine and nutritional control but also under autocrine and paracrine control.

1990 ◽  
Vol 10 (2) ◽  
pp. 689-695
Author(s):  
R A Rippe ◽  
D A Brenner ◽  
H L Leffert

Proliferation-competent and differentiation-competent adult rat hepatocytes in primary culture were investigated for their ability to express reporter genes (firefly luciferase, bacterial chloramphenicol acetyltransferase, and bacterial beta-galactosidase) driven by tumor virus or eucaryotic promoters that vary in transcriptional efficiency and tissue specificity. Supercoiled plasmid DNA molecules were introduced into the cells by the calcium phosphate coprecipitation protocol of C. Chen and H. Okayama (Mol. Cell. Biol. 7:2745-2752, 1987). Reporter gene expression was virtually restricted to hepatocytes and was efficient (2 to 20% of the cells). The patterns and absolute levels of reporter gene expression depended on assay conditions employed (plasmid concentration [optimal at 2.4 micrograms of DNA per ml] and duration of exposure [optimal between 5 and 10 h]), culture growth cycle stages (lag, log, or stationary phase), properties and tissue specificity of the promoter(s) tested, and composition (and timing of fluid change) of the culture medium with or without the hepatocyte mitogen human transforming growth factor-alpha. Initial observations suggest that during hepatocellular growth transitions, human transforming growth factor-alpha differentially regulates exogenously introduced promoters associated with hepatocyte-specific function and proliferation. These findings provide a simple, fast, and powerful approach to analyzing the molecular and cellular biology of hepatocyte growth control.


1990 ◽  
Vol 10 (2) ◽  
pp. 689-695 ◽  
Author(s):  
R A Rippe ◽  
D A Brenner ◽  
H L Leffert

Proliferation-competent and differentiation-competent adult rat hepatocytes in primary culture were investigated for their ability to express reporter genes (firefly luciferase, bacterial chloramphenicol acetyltransferase, and bacterial beta-galactosidase) driven by tumor virus or eucaryotic promoters that vary in transcriptional efficiency and tissue specificity. Supercoiled plasmid DNA molecules were introduced into the cells by the calcium phosphate coprecipitation protocol of C. Chen and H. Okayama (Mol. Cell. Biol. 7:2745-2752, 1987). Reporter gene expression was virtually restricted to hepatocytes and was efficient (2 to 20% of the cells). The patterns and absolute levels of reporter gene expression depended on assay conditions employed (plasmid concentration [optimal at 2.4 micrograms of DNA per ml] and duration of exposure [optimal between 5 and 10 h]), culture growth cycle stages (lag, log, or stationary phase), properties and tissue specificity of the promoter(s) tested, and composition (and timing of fluid change) of the culture medium with or without the hepatocyte mitogen human transforming growth factor-alpha. Initial observations suggest that during hepatocellular growth transitions, human transforming growth factor-alpha differentially regulates exogenously introduced promoters associated with hepatocyte-specific function and proliferation. These findings provide a simple, fast, and powerful approach to analyzing the molecular and cellular biology of hepatocyte growth control.


Sign in / Sign up

Export Citation Format

Share Document