NCAH and Female Reproduction

2019 ◽  
Author(s):  
Melek Eda Ertorer
Keyword(s):  
2020 ◽  
Vol 17 (1) ◽  
pp. 28-37
Author(s):  
Tabinda Sattar

Background: Selenium is a micronutrient, although required in low amounts, its importance in male and female reproduction is well known. Objectives: The core purpose of this study is to evaluate the role of selenium in human reproduction, during pregnancy/ lactation in women and newborns. The review explains side by side the sources of selenium, required amounts of selenium in humans and during pregnancy or lactation. Methods: Selenium deficiency is a major cause of male infertility. Similarly, selenium deficiency, both in pregnant and postpartum women, would greatly affect the health of the newborn baby in all respects. The effect of maternal selenium upon the fetus and the neonates even one year after birth has been explained with some recent examples. Results: The study elaborates the fact that the selenium deficiency in pregnancy and lactation is common due to fetal/infant development, so selenium supplements must be provided in order to overcome these deficiency symptoms. Conclusions: The better reproductive health in humans is possible due to the sufficient amounts of selenium present both in males and females as well.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1047
Author(s):  
Giovanna Di Emidio ◽  
Stefano Falone ◽  
Paolo Giovanni Artini ◽  
Fernanda Amicarelli ◽  
Anna Maria D’Alessandro ◽  
...  

Mitochondria act as hubs of numerous metabolic pathways. Mitochondrial dysfunctions contribute to altering the redox balance and predispose to aging and metabolic alterations. The sirtuin family is composed of seven members and three of them, SIRT3-5, are housed in mitochondria. They catalyze NAD+-dependent deacylation and the ADP-ribosylation of mitochondrial proteins, thereby modulating gene expression and activities of enzymes involved in oxidative metabolism and stress responses. In this context, mitochondrial sirtuins (mtSIRTs) act in synergistic or antagonistic manners to protect from aging and aging-related metabolic abnormalities. In this review, we focus on the role of mtSIRTs in the biological competence of reproductive cells, organs, and embryos. Most studies are focused on SIRT3 in female reproduction, providing evidence that SIRT3 improves the competence of oocytes in humans and animal models. Moreover, SIRT3 protects oocytes, early embryos, and ovaries against stress conditions. The relationship between derangement of SIRT3 signaling and the imbalance of ROS and antioxidant defenses in testes has also been demonstrated. Very little is known about SIRT4 and SIRT5 functions in the reproductive system. The final goal of this work is to understand whether sirtuin-based signaling may be taken into account as potential targets for therapeutic applications in female and male infertility.


2021 ◽  
pp. 1-22
Author(s):  
Melissa A. White ◽  
Dawn S. Chen ◽  
Mariana F. Wolfner
Keyword(s):  

Author(s):  
Heba Elhusseini ◽  
Daria Lizneva ◽  
Larisa Gavrilova-Jordan ◽  
Noura Eziba ◽  
Mohamed Abdelaziz ◽  
...  

Reproduction ◽  
2018 ◽  
Author(s):  
Susana B Rulli ◽  
María Julia Cambiasso ◽  
Laura D Ratner

In mammals, the reproductive function is controlled by the hypothalamic-pituitary-gonadal axis. During development, mechanisms mediated by gonadal steroids exert an imprinting at the hypothalamic-pituitary level, by establishing sexual differences in the circuits that control male and female reproduction. In rodents, the testicular production of androgens increases drastically during the fetal/neonatal stage. This process is essential for the masculinization of the reproductive tract, genitals and brain. The conversion of androgens to estrogens in the brain is crucial for the male sexual differentiation and behavior. Conversely, feminization of the brain occurs in the absence of high levels of gonadal steroids during the perinatal period in females. Potential genetic contribution to the differentiation of brain cells through direct effects of genes located on sex chromosomes is also relevant. In this review, we will focus on the phenotypic alterations that occur on the hypothalamic-pituitary-gonadal axis of transgenic mice with persistently elevated expression of the human chorionic gonadotropin hormone (hCG). Excess of endogenously synthesized gonadal steroids due to a constant hCG stimulation is able to disrupt the developmental programming of the hypothalamic-pituitary axis in both transgenic males and females. Locally produced estrogens by the hypothalamic aromatase might play a key role in the phenotype of these mice. The “four core genotypes” mouse model demonstrated a potential influence of sex chromosome genes in brain masculinization before critical periods of sex differentiation. Thus, hormonal and genetic factors interact to regulate the local production of the neurosteroids necessary for the programming of the male and female reproductive function.


Sign in / Sign up

Export Citation Format

Share Document