Generation and differentiation of adult tissue-derived human thyroid organoids

Author(s):  
Ogundipe VML ◽  
Groen AH ◽  
Hosper N ◽  
Nagle PWK ◽  
Hess J ◽  
...  
Keyword(s):  
Author(s):  
Vivian M.L. Ogundipe ◽  
Andries H. Groen ◽  
Nynke Hosper ◽  
Peter W.K. Nagle ◽  
Julia Hess ◽  
...  
Keyword(s):  

Author(s):  
N. P. Dmitrieva

One of the most characteristic features of cancer cells is their ability to metastasia. It is suggested that the modifications of the structure and properties of cancer cells surfaces play the main role in this process. The present work was aimed at finding out what ultrastructural features apear in tumor in vivo which removal of individual cancer cells from the cell population can provide. For this purpose the cellular interactions in the normal human thyroid and cancer tumor of this gland electron microscopic were studied. The tissues were fixed in osmium tetroxide and were embedded in Araldite-Epon.In normal human thyroid the most common type of intercellular contacts was represented by simple junction formed by the parallelalignment of adjacent cell membranees leaving in between an intermembranes space 15-20 nm filled with electronlucid material (Fig. 1a). Sometimes in the basal part of cells dilatations of the intercellular space 40-50 nm wide were found (Fig. 1a). Here the cell surfaces may form single short microvilli.


2013 ◽  
Vol 1 (2) ◽  
pp. 17-20
Author(s):  
Md Enayet Ullah ◽  
Hasna Hena ◽  
Rubina Qasim

Deep cervical fascia forms a connective tissue sheath around the thyroid gland. Delicate trabeculae and septa penetrate the gland indistinctly dividing the gland into lobes and lobules which in turn composed of follicles.1,2,3 These follicles are structural units of thyroid gland which varies greatly in size and shape.4 The number of follicles varies in different age groups. The study was carried out to see the percentage of area occupied by follicles in the stained section of thyroid glands in different age groups. The collected samples were grouped as A (3.5 – 20yrs), B (21- 40yrs) & C (41 – 78yrs). Percentage of area occupied by follicles was (58.55±10.72) in group A, (63.79±12.35) in group B + (63.39±8.29) in group C.DOI: http://dx.doi.org/10.3329/updcj.v1i2.13981 Update Dent. Coll. j. 2011: 1(2): 17-20


1986 ◽  
Vol 113 (1_Suppl) ◽  
pp. S48-S49
Author(s):  
P.-M. SCHUMM-DRAEGER ◽  
H.J.C. WENISCH ◽  
F.D. MAUL ◽  
C. TIMM

2014 ◽  
Author(s):  
Ying-Ray Lee ◽  
Chieh-Hsiang Lu ◽  
Yi-Sheng Chang ◽  
Yi-Wen Liu

2020 ◽  
Vol 20 (4) ◽  
pp. 609-618
Author(s):  
Baocui Liu ◽  
Tingting Zheng ◽  
Liyang Dong ◽  
Chaoming Mao ◽  
Chengcheng Xu ◽  
...  

Background: Hashimoto’s thyroiditis (HT) is characterized by lymphocytic infiltration of the thyroid parenchyma, which ultimately leads to tissue destruction and loss of function. Caveolin-1 (Cav-1) is an essential structural constituent of lipid rafts in the plasma membrane of cells and is reported to be significantly reduced in thyrocytes from HT patients. However, the mechanism of Cav-1 involvement in HT pathogenesis is still largely unclear. Methods: Cav-1 expression in thyroid tissues from HT patients and euthyroid nodular goiter tissues was detected by immunohistochemistry staining. Cav-1 knockdown and overexpression were constructed by lentiviral transfection in the human thyroid follicular epithelial cell (TFC) line of Nthy-ori 3-1. The mRNA expression levels of chemokines in TFCs were determined by quantitative real-time PCR (qPCR). Cav-1 and peroxisome proliferator-activated receptor gamma (PPARγ) levels were analysed by qPCR and Western blot analysis. The migration ability of peripheral blood mononuclear cells (PBMCs) was detected by the Transwell assay. Results: In this study, Cav-1 and PPARγ expression was reduced in the thyroid tissues from HT patients. In vitro experiments showed that the expressions of chemokine (C-C motif) ligand 5 (CCL5) and migration of PBMCs were markedly increased, while the level of PPARγ was significantly decreased after the lentivirus-mediated knockdown of Cav-1 in Nthy-ori 3-1 cells. Interestingly, pioglitazone, a PPARγ agonist, not only upregulated PPARγ and Cav-1 proteins significantly, but also effectively reversed the Cav-1-knockdown-induced upregulation of CCL5 in Nthy-ori 3-1 cells and reduced the infiltration of lymphocytes. Conclusion: The inhibition of Cav-1 upregulated the CCL5 expression and downregulated the PPARγ expression in TFC while pioglitazone, a PPARγ agonist, reversed the detrimental consequence. This outcome might be a potential target for the treatment of lymphocyte infiltration into the thyroid gland and HT development.


Author(s):  
Amaia Sandúa ◽  
Monica Macias ◽  
Carolina Perdomo ◽  
Juan Carlos Galofre ◽  
Roser Ferrer ◽  
...  

AbstractBackgroundThyroglobulin (Tg) is fundamental for differentiated thyroid cancer (DTC) monitoring. Tg detection can be enhanced using recombinant human thyroid-stimulating hormone (TSH) (rhTSH). This study is aimed to evaluate the use of the rhTSH stimulation test when using a high-sensitivity Tg assay.MethodsWe retrospectively studied 181 rhTSH tests from 114 patients with DTC and negative for antithyroglobulin antibodies (anti-TgAb). Image studies were performed in all cases. Serum Tg and anti-TgAb were measured using specific immunoassays.ResultsrhTSH stimulation in patients with basal serum Tg (b-Tg) concentrations lower than 0.2 ng/mL always resulted in rhTSH-stimulated serum Tg (s-Tg) concentrations lower than 1.0 ng/mL and negative structural disease. In patients with b-Tg concentration between 0.2 and 1.0 ng/mL, s-Tg detected one patient (1/30) who showed biochemical incomplete response. Patients with negative images had lower s-Tg than those with nonspecific or abnormal findings (p<0.05). Receiver operating characteristic curve analysis of the s-Tg to detect altered images showed an area under the curve of 0.763 (p<0.05). With an s-Tg cutoff of 0.85 ng/mL, the sensitivity was 100%, decreasing to 96.15% with an s-Tg cutoff of 2 ng/mL.ConclusionsPatients with DTC with b-Tg concentrations equal or higher than 0.2 ng/mL can benefit from the rhTSH stimulation test.


Author(s):  
Sarai Keestra ◽  
Vedrana Högqvist Tabor ◽  
Alexandra Alvergne

Abstract Two hundred million people worldwide experience some form of thyroid disorder, with women being especially at risk. However, why human thyroid function varies between populations, individuals and across the lifespan has attracted little research to date. This limits our ability to evaluate the conditions under which patterns of variation in thyroid function are best understood as ‘normal’ or ‘pathological’. In this review, we aim to spark interest in research aimed at understanding the causes of variation in thyroid phenotypes. We start by assessing the biomedical literature on thyroid imbalance to discuss the validity of existing reference intervals for diagnosis and treatment across individuals and populations. We then propose an evolutionary ecological framework for understanding the phylogenetic, genetic, ecological, developmental and physiological causes of normal variation in thyroid function. We build on this approach to suggest testable predictions for how environmental challenges interact with individual circumstances to influence the onset of thyroid disorders. We propose that dietary changes, ecological disruptions of co-evolutionary processes during pregnancy and with pathogens, emerging infections and exacerbated stress responses can contribute to explaining the onset of thyroid diseases. For patients to receive the best personalised care, research into the causes of thyroid variation at multiple levels is needed.


Sign in / Sign up

Export Citation Format

Share Document