scholarly journals Stimulation of motility and respiration of intact fowl spermatozoa by calyculin A, a specific inhibitor of protein phosphatase-1 and -2A, via a Ca2+-dependent mechanism

Reproduction ◽  
1995 ◽  
Vol 105 (1) ◽  
pp. 109-114 ◽  
Author(s):  
K. Ashizawa ◽  
A. Magome ◽  
Y. Tsuzuki
1997 ◽  
Vol 328 (2) ◽  
pp. 695-700 ◽  
Author(s):  
Mary BOARD

Previous work has shown that the C-1-substituted glucose-analogue N-acetyl-β-D-glucopyranosylamine (1-GlcNAc) is a competitive inhibitor of glycogen phosphorylase (GP) and stimulates the inactivation of this enzyme by GP phosphatase. In addition to its effects on GP, 1-GlcNAc also prevents the glucose-led activation of glycogen synthase (GS) in whole hepatocytes. Such an effect on GS was thought to be due to the formation of 1-GlcNAc-6-P by the action of glucokinase within the hepatocyte [Board, Bollen, Stalmans, Kim, Fleet and Johnson (1995) Biochem. J. 311, 845-852]. To investigate this possibility further, a pure preparation of 1-GlcNAc-6-P was synthesized. The effects of the phosphorylated glucose analogue on the activity of protein phosphatase 1 (PP1), the enzyme responsible for dephosphorylation and activation of GS, are reported. During the present study, 1-GlcNAc-6-P inhibited the activity of the glycogen-bound form of PP1, affecting both the GSb phosphatase and GPa phosphatase activities. A level of 50% inhibition of GSb phosphatase activity was achieved with 85 μM 1-GlcNAc-6-P in the absence of Glc-6-P and with 135 μM in the presence of 10 mM Glc-6-P. At either Glc-6-P concentration, 500 μM 1-GlcNAc-6-P completely inhibited activity. The Glc-6-P stimulation of the GPa phosphatase activity of PP1 was negated by 1-GlcNAc-6-P but there was no inhibition of the basal rate in the absence of Glc-6-P. 1-GlcNAc-6-P inhibition was specific for the glycogen-bound form of PP1 and did not inhibit the GSb phosphatase activity of the cytosolic form of the enzyme. The present work explains our previous observations on the inactivating effects on GS of incubating whole hepatocytes with 1-GlcNAc. These observations have their basis in the inhibition of glycogen-bound PP1 by 1-GlcNAc-6-P. A novel inhibitor of PP1, specific for the glycogen-bound form of the enzyme, is presented.


2000 ◽  
Vol 68 (3) ◽  
pp. 1350-1358 ◽  
Author(s):  
George A. Orr ◽  
Craig Werner ◽  
Jun Xu ◽  
Marcia Bennett ◽  
Louis M. Weiss ◽  
...  

ABSTRACT We cloned two novel Trypanosoma cruzi proteins by using degenerate oligonucleotide primers prepared against conserved domains in mammalian serine/threonine protein phosphatases 1, 2A, and 2B. The isolated genes encoded proteins of 323 and 330 amino acids, respectively, that were more homologous to the catalytic subunit of human protein phosphatase 1 than to those of human protein phosphatase 2A or 2B. The proteins encoded by these genes have been tentatively designated TcPP1α and TcPP1β. Northern blot analysis revealed the presence of a major 2.3-kb mRNA transcript hybridizing to each gene in both the epimastigote and metacyclic trypomastigote developmental stages. Southern blot analysis suggests that each protein phosphatase 1 gene is present as a single copy in the T. cruzi genome. The complete coding region for TcPP1β was expressed inEscherichia coli by using a vector, pTACTAC, with thetrp-lac hybrid promoter. The recombinant protein from the TcPP1β construct displayed phosphatase activity toward phosphorylasea, and this activity was preferentially inhibited by calyculin A (50% inhibitory concentration [IC50], ∼2 nM) over okadaic acid (IC50, ∼100 nM). Calyculin A, but not okadaic acid, had profound effects on the in vitro replication and morphology of T. cruzi epimastigotes. Low concentrations of calyculin A (1 to 10 nM) caused growth arrest. Electron microscopic studies of the calyculin A-treated epimastigotes revealed that the organisms underwent duplication of organelles, including the flagellum, kinetoplast, and nucleus, but were incapable of completing cell division. At concentrations higher than 10 nM, or upon prolonged incubation at lower concentrations, the epimastigotes lost their characteristic elongated spindle shape and had a more rounded morphology. Okadaic acid at concentrations up to 1 μM did not result in growth arrest or morphological alterations to T. cruziepimastigotes. Calyculin A, but not okadaic acid, was also a potent inhibitor of the dephosphorylation of 32P-labeled phosphorylase a by T. cruzi epimastigotes and metacyclic trypomastigote extracts. These inhibitor studies suggest that in T. cruzi, type 1 protein phosphatases are important for the completion of cell division and for the maintenance of cell shape.


2015 ◽  
Vol 308 (6) ◽  
pp. L577-L585 ◽  
Author(s):  
Michael E. Price ◽  
Jacqueline A. Pavlik ◽  
Joseph H. Sisson ◽  
Todd A. Wyatt

Airway mucociliary clearance is a first-line defense of the lung against inhaled particles and debris. Among individuals with alcohol use disorders, there is an increase in lung diseases. We previously identified that prolonged alcohol exposure impairs mucociliary clearance, known as alcohol-induced ciliary dysfunction (AICD). Cilia-localized enzymes, known as the ciliary metabolon, are key to the pathogenesis of AICD. In AICD, cyclic nucleotide-dependent ciliary kinases, which modulate phosphorylation to regulate cilia beat, are desensitized. We hypothesized that alcohol activates cilia-associated protein phosphatase 1 (PP1) activity, driving phosphorylation changes of cilia motility regulatory proteins. To test this hypothesis we identified the effects of prolonged alcohol exposure on phosphatase activity, cilia beat, and kinase responsiveness and cilia-associated phosphorylation targets when stimulated by β-agonist or cAMP. Prolonged alcohol activated PP1 and blocked cAMP-dependent cilia beat and protein kinase A (PKA) responsiveness and phosphorylation of a 29-kDa substrate of PKA. Importantly, prolonged alcohol-induced phosphatase activation was inhibited by the PP1 specific inhibitor, inhibitor-2 (I-2), restoring cAMP-stimulated cilia beat and PKA responsiveness and phosphorylation of the 29-kDa substrate. The I-2 inhibitory effect persisted in tissue, cell, and isolated cilia-organelle models, highlighting the association of ciliary metabolon-localized enzymes to AICD. Prolonged alcohol exposure drives ciliary metabolon-localized PP1 activation. PP1 activation modifies phosphorylation of a 29-kDa protein related to PKA activity. These data reinforce our previous findings that alcohol is acting at the level of the ciliary metabolon to cause ciliary dysfunction and identifies PP1 as a therapeutic target to prevent or reverse AICD.


2019 ◽  
Vol 30 (5) ◽  
pp. 737-750 ◽  
Author(s):  
David Penton ◽  
Sandra Moser ◽  
Agnieszka Wengi ◽  
Jan Czogalla ◽  
Lena Lindtoft Rosenbaek ◽  
...  

BackgroundA number of cAMP-elevating hormones stimulate phosphorylation (and hence activity) of the NaCl cotransporter (NCC) in the distal convoluted tubule (DCT). Evidence suggests that protein phosphatase 1 (PP1) and other protein phosphatases modulate NCC phosphorylation, but little is known about PP1’s role and the mechanism regulating its function in the DCT.MethodsWe used ex vivo mouse kidney preparations to test whether a DCT-enriched inhibitor of PP1, protein phosphatase 1 inhibitor–1 (I1), mediates cAMP’s effects on NCC, and conducted yeast two-hybrid and coimmunoprecipitation experiments in NCC-expressing MDCK cells to explore protein interactions.ResultsTreating isolated DCTs with forskolin and IBMX increased NCC phosphorylation via a protein kinase A (PKA)–dependent pathway. Ex vivo incubation of mouse kidney slices with isoproterenol, norepinephrine, and parathyroid hormone similarly increased NCC phosphorylation. The cAMP-induced stimulation of NCC phosphorylation strongly correlated with the phosphorylation of I1 at its PKA consensus phosphorylation site (a threonine residue in position 35). We also found an interaction between NCC and the I1-target PP1. Moreover, PP1 dephosphorylated NCC in vitro, and the PP1 inhibitor calyculin A increased NCC phosphorylation. Studies in kidney slices and isolated perfused kidneys of control and I1-KO mice demonstrated that I1 participates in the cAMP-induced stimulation of NCC.ConclusionsOur data suggest a complete signal transduction pathway by which cAMP increases NCC phosphorylation via a PKA-dependent phosphorylation of I1 and subsequent inhibition of PP1. This pathway might be relevant for the physiologic regulation of renal sodium handling by cAMP-elevating hormones, and may contribute to salt-sensitive hypertension in patients with endocrine disorders or sympathetic hyperactivity.


1997 ◽  
Vol 272 (37) ◽  
pp. 23312-23316 ◽  
Author(s):  
Mika K. Lindvall ◽  
Petri M. Pihko ◽  
Ari M. P. Koskinen

2002 ◽  
Vol 58 (s1) ◽  
pp. c103-c103
Author(s):  
A. Kita ◽  
S. Matsunaga ◽  
A. Takai ◽  
H. Kataiwa ◽  
T. Wakimoto ◽  
...  

1995 ◽  
Vol 269 (4) ◽  
pp. C849-C855 ◽  
Author(s):  
I. Bize ◽  
P. B. Dunham

K-Cl cotransport is involved in volume regulation in a number of cell types. Cell swelling stimulates K-Cl cotransport, probably by inhibition of a volume-sensitive kinase. K-Cl cotransport can also be activated by oxidants and thiol reagents. We investigated the effect of H2O2 on K-Cl cotransport of LK sheep red blood cells in an attempt to identify the target of oxidants. H2O2 stimulated K-Cl cotransport. The stimulation was virtually abolished by subsequent incubation with calyculin, a protein phosphatase inhibitor. This suggests that H2O2 stimulates a calyculin-sensitive phosphatase and activates K-Cl cotransport by causing a decrease in phosphorylation of the transporter or a regulatory protein. The thiol reagent N-ethylmaleimide, which stimulates K-Cl cotransport, did not stimulate cotransport further in cells with cotransport activated by staurosporine but did stimulate cotransport further in cells with cotransport activated by H2O2. These results suggest that there are at least two distinct phosphorylation sites on the transporter or a regulator. The results also suggest that the phosphatase is associated with the membrane.


1992 ◽  
Vol 3 (6) ◽  
pp. 687-698 ◽  
Author(s):  
D H Walker ◽  
A A DePaoli-Roach ◽  
J L Maller

Using cytostatic factor metaphase II-arrested extracts as a model system, we show that protein phosphatase 1 is regulated during early embryonic cell cycles in Xenopus. Phosphatase 1 activity peaks during interphase and decreases shortly before the onset of mitosis. A second peak of activity appears in mitosis at about the same time that cdc2 becomes active. If extracts are inhibited in S-phase with aphidicolin, then phosphatase 1 activity remains high. The activity of phosphatase 1 appears to determine the timing of exit from S-phase and entry into M-phase; inhibition of phosphatase 1 by the specific inhibitor, inhibitor 2 (Inh-2), causes premature entry into mitosis, whereas exogenously added phosphatase 1 lengthens the interphase period. Analysis of DNA synthesis in extracts treated with Inh-2, but lacking the A- and B-type cyclins, shows that phosphatase 1 is also required for the process of DNA replication. These data indicate that phosphatase 1 is a component of the signaling pathway that ensures that M-phase is not initiated until DNA synthesis is complete.


Sign in / Sign up

Export Citation Format

Share Document