phosphatase activation
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 5)

H-INDEX

16
(FIVE YEARS 2)

2020 ◽  
Vol 295 (17) ◽  
pp. 5669-5684 ◽  
Author(s):  
Eisuke Suzuki ◽  
Namino Ogawa ◽  
Taka-aki Takeda ◽  
Yukina Nishito ◽  
Yu-ki Tanaka ◽  
...  

Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5–ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5–ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5–ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway.


2019 ◽  
Author(s):  
Marilia H Cordeiro ◽  
Richard J Smith ◽  
Adrian T Saurin

AbstractLocal phosphatase regulation is critical for determining when phosphorylation signals are activated or deactivated. A typical example is the spindle assembly checkpoint (SAC) during mitosis, which regulates kinetochore PP1 and PP2A-B56 activities to switch-off signalling events at the correct time. In this case, kinetochore phosphatase activation dephosphorylates MELT motifs on KNL1 to remove SAC proteins, including the BUB complex. We show here that, surprisingly, neither PP1 or PP2A are required to dephosphorylate the MELT motifs. Instead, they remove polo-like kinase 1 (PLK1) from the BUB complex, which can otherwise maintain MELT phosphorylation in an autocatalytic manner. This is their principle role in the SAC, because both phosphatases become redundant if PLK1 is inhibited or BUB-PLK1 interaction is prevented. Therefore, phosphatase regulation is critical for the SAC, but primarily to restrain and extinguish autonomous kinase activity. We propose that these circuits have evolved to generate a semi-autonomous SAC signal that can be synchronously silenced following kinetochore-microtubule tension.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Armine Hovakimyan ◽  
Tatevik Antonyan ◽  
Sepideh Kiani Shabestari ◽  
Olga Svystun ◽  
Gor Chailyan ◽  
...  

Abstract Pathological tau correlates well with cognitive impairments in Alzheimer’s disease (AD) patients and therefore represents a promising target for immunotherapy. Targeting an appropriate B cell epitope in pathological tau could in theory produce an effective reduction of pathology without disrupting the function of normal native tau. Recent data demonstrate that the N-terminal region of tau (aa 2-18), termed the “phosphatase activation domain (PAD)”, is hidden within native Tau in a ‘paperclip’-like conformation. Conversely, PAD is exposed in pathological tau and plays an essential role in the inhibition of fast axonal transport and tau polymerization. Thus, we hypothesized that anti-tau2-18 antibodies may safely and specifically reduce pathological tau and prevent further aggregation, which in turn would neutralize tau toxicity. Therefore, we evaluated the immunogenicity and therapeutic efficacy of our MultiTEP platform-based vaccine targeting tau2-18 formulated with AdvaxCpG adjuvant (AV-1980R/A) in PS19 tau transgenic mice. The AV-1980R/A induced extremely high antibody responses and the resulting sera recognized neurofibrillary tangles and plaque-associated dystrophic neurites in AD brain sections. In addition, under non-denaturing conditions AV-1980R/A sera preferentially recognized AD-associated tau. Importantly, vaccination also prevented age-related motor and cognitive deficits in PS19 mice and significantly reduced insoluble total and phosphorylated tau species. Taken together, these findings suggest that predominantly targeting misfolded tau with AV-1980R/A could represent an effective strategy for AD immunotherapy.


2018 ◽  
Vol 270 ◽  
pp. 228-236 ◽  
Author(s):  
Farhan Rizvi ◽  
Ramail Siddiqui ◽  
Alessandra DeFranco ◽  
Peter Homar ◽  
Larisa Emelyanova ◽  
...  

Author(s):  
Brittany L. Allen-Petersen ◽  
Amy S. Farrell ◽  
Colin J. Daniel ◽  
Zhiping Wang ◽  
Charles D. Lopez ◽  
...  

2015 ◽  
Vol 308 (6) ◽  
pp. L577-L585 ◽  
Author(s):  
Michael E. Price ◽  
Jacqueline A. Pavlik ◽  
Joseph H. Sisson ◽  
Todd A. Wyatt

Airway mucociliary clearance is a first-line defense of the lung against inhaled particles and debris. Among individuals with alcohol use disorders, there is an increase in lung diseases. We previously identified that prolonged alcohol exposure impairs mucociliary clearance, known as alcohol-induced ciliary dysfunction (AICD). Cilia-localized enzymes, known as the ciliary metabolon, are key to the pathogenesis of AICD. In AICD, cyclic nucleotide-dependent ciliary kinases, which modulate phosphorylation to regulate cilia beat, are desensitized. We hypothesized that alcohol activates cilia-associated protein phosphatase 1 (PP1) activity, driving phosphorylation changes of cilia motility regulatory proteins. To test this hypothesis we identified the effects of prolonged alcohol exposure on phosphatase activity, cilia beat, and kinase responsiveness and cilia-associated phosphorylation targets when stimulated by β-agonist or cAMP. Prolonged alcohol activated PP1 and blocked cAMP-dependent cilia beat and protein kinase A (PKA) responsiveness and phosphorylation of a 29-kDa substrate of PKA. Importantly, prolonged alcohol-induced phosphatase activation was inhibited by the PP1 specific inhibitor, inhibitor-2 (I-2), restoring cAMP-stimulated cilia beat and PKA responsiveness and phosphorylation of the 29-kDa substrate. The I-2 inhibitory effect persisted in tissue, cell, and isolated cilia-organelle models, highlighting the association of ciliary metabolon-localized enzymes to AICD. Prolonged alcohol exposure drives ciliary metabolon-localized PP1 activation. PP1 activation modifies phosphorylation of a 29-kDa protein related to PKA activity. These data reinforce our previous findings that alcohol is acting at the level of the ciliary metabolon to cause ciliary dysfunction and identifies PP1 as a therapeutic target to prevent or reverse AICD.


Sign in / Sign up

Export Citation Format

Share Document